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Abstract: We studied scalar field 𝜙CDM models: ten quintessence models and seven phantom mod-

els. We reconstructed these models, using the phenomenological method developed by us. Result-

ing in, for each potential the following ranges were found: (i) model parameters; (ii) EoS parameters; 

(iii) initial conditions for differential equations, which describe the dynamics of the universe. Using 

the MCMC analysis, we obtained constraints on scalar field models by comparing observations for: 

the expansion rate of the universe, the angular diameter distance and the growth rate function with 

corresponding data generated for the fiducial ΛCDM model. We applied the Bayes statistical criteria 

to compare scalar field models. To this end, we calculated the Bayes factor, as well as the AIC and 

BIC information criteria. The results of this analysis showed that we could not uniquely identify the 

preferable scalar field 𝜙CDM models compared to the fiducial ΛCDM model based on the predicted 

DESI data, and that the ΛCDM model is a true dark energy model. We investigated scalar field 

𝜙CDM models in the w0 - wa phase space of CPL- ΛCDM contours. We identified subclasses of 

quintessence and phantom scalar field models, which at the present epoch: (i) can be distinguished 

from the ΛCDM model; (ii) cannot be distinguished from the ΛCDM model; (iii) can be either dis-

tinguished or undistinguished from the ΛCDM model. We found that all studied models can be 

divided into two classes: models that have attractor solutions and models whose evolution depends 

on initial conditions. 

Keywords: dark energy; scalar field; large-scale structure; Bayesian statistics; Monte Carlo Markov 

Chains analysis 

 

1. Introduction: 

According to measurements of the Supernovae type Ia magnitudes, our universe is 

expanding with an acceleration [1, 2]. One of the possible explanations of this fact is that 

the energy density of the universe is dominated by so-called dark energy, a component 

with effective negative pressure [3]. The simplest description of dark energy is the concept 

of vacuum energy or cosmological constant Λ [4]. The energy density of the cosmological 

constant does not depend on time and has recently become dominant (in particular, the 

energy density associated with the cosmological constant is about 69% of the total energy 

density of the universe at present epoch [5]).  Sometimes the ΛCDM model is referred as 

a standard, fiducial model. The theoretical predictions of the ΛCDM model are in good 
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agreement with current observations, but there are several unresolved problems associ-

ated with this model [6].               

The main alternatives to the ΛCDM model of dark energy are dynamical scalar field 

models, in which energy density depends on time [7, 8]. In these models, a spatially uni-

form cosmological scalar field, slowly rolling down its almost flat self-interaction poten-

tial, plays a role of time-dependent cosmological constant Λ. In scalar field models, the 

equation of state (EoS) parameter 𝑤𝜙 depends on time: 𝑤𝜙  ≡ 𝑝𝜙/𝜌𝜙, where  𝑝𝜙 and 𝜌𝜙 are 

respectively, the pressure and density energy of the scalar field; whereas in the ΛCDM 

model, the EoS parameter is a constant, 𝑤Λ  =  −1. Depending on the value of the EoS 

parameter, 𝜙CDM scalar field models are divided into: quintessence models, with 𝑤𝜙 ∈

(−1; −1/3) [9], and phantom models, with 𝑤𝜙  <  −1 [10]. Quintessence models are di-

vided into two classes: tracker (freezing) models, in which the scalar field evolves slower 

than the Hubble expansion rate, and thawing models, in which the scalar field evolves 

faster than the Hubble expansion rate [11]. 

We studied a number of the 𝜙CDM scalar field models in order to determine the 

preferred dark energy models compared to the ΛCDM model at the present epoch using 

the predicted data for the Dark Energy Spectroscopic Instrument (DESI) observations [12, 

13]. For this purpose, we carried out the statistical Bayesian analysis, such as Bayes coef-

ficients, as well as Akaike and Bayesian information criteria. We found that the results of 

the Bayesian analysis provide compelling evidence in favor of the ΛCDM model. We also 

conducted the Monte Carlo Markov Chains (MCMC) analysis and obtained the con-

straints on the parameters of the scalar field models, comparing the observational data for: 

the universe expansion rate of the universe, the angular diameter distance and the growth 

rate function, with the corresponding data generated for the ΛCDM model.  

We investigated how well the Chevallier-Polarsky-Linder (CPL) parametrization ap-

proximates the various scalar field models. We determined the location of the scalar field 

model in the phase space of the CPL parameter. In this manuscript, we used the natural 

system of units: 𝑐 = 𝑘𝐵 = 1.  

2. Methods 

We considered two types of scalar field 𝜙𝐶𝐷𝑀 models for the spatially flat universe: 

the quintessence and the phantom scalar field 𝜙𝐶𝐷𝑀 models. We assumed that the flat, 

homogeneous and isotropic universe is described by the Friedmann– Lemaître–Robert-

son–Walker spacetime metric, 𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)𝑑𝒙2, here 𝑎(𝑡) is the scale factor (normal-

ized to be unity at present epoch 𝑎0  ≡  𝑎(𝑡0)), and 𝑡 is the cosmic time. 

The action and the equation of motion of the Klein–Gordon scalar field for the scalar 

field are, respectively 

𝑆 =
𝑀𝑝𝑙

2

16𝜋
∫ 𝑑4𝑥 [√−𝑔(±

1

2
𝑔𝜇𝜈  𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉(𝜙))], (1) 

�̈� + 3
�̇� 

𝑎
±

𝜕𝑉(𝜙)

𝜕𝜙
= 0 (2) 

where 𝑀𝑝𝑙  is a Plank mass, " ± " sign corresponds to the quintessence/phantom model, 

the over-dot denotes a derivative with respect to the cosmic time,  𝑔𝜇𝜈 is the background 

metric, 𝑉(𝜙) is the self-interacting potential of the scalar field 𝜙. 

The energy density 𝜌𝜙 , pressure 𝑝𝜙  and EoS parameter 𝑤𝜙  of the scalar field are de-

fined, respectively, as 

𝜌𝜙 =  
𝑀𝑝𝑙

2

16𝜋
(±�̇�2/2 + 𝑉(𝜙)),                                                                                                                                              (3) 

                                                                                                                         



Phys. Sci. Forum 2023, 3, x 3 of 7 

 

𝑝𝜙  =  
𝑀𝑝𝑙

2

16𝜋
(±�̇�2/2 − 𝑉(𝜙)), (4) 

                                                                                                                                       

𝑤𝜙  =  
𝑝𝜙

𝜌𝜙

=
±�̇�2/2 − 𝑉(𝜙)

±�̇�2/2 + 𝑉(𝜙)
 (5) 

                                                                                                                                 

The regime of a slowly rolling scalar field, in which 𝑤𝜙   ≈ −1, is realized under the 

condition that the kinetic term is much less than the potential one, i.e., | ± �̇�2/2| ≪  𝑉(𝜑). 

The EoS parameter of dark energy models is often represented by the CPL 𝑤0 −

 𝑤𝑎   parametrization [14, 15] 

 

𝑤(𝑎)  = 𝑤0  +  𝑤𝑎 (1 −  𝑎) (6) 

                                                                                     

where 𝑤0  =  𝑤(𝑎 =  1) and 𝑤𝑎 =  −𝑎−2 (
𝑑𝑤

𝑑𝑎
) |𝑎=1/2 . The CPL parametrization of the EoS 

parameter for the standard ΛCDM model has the form: (𝑤0, 𝑤𝑎) = (−1, 0). 

We studied seven phantom and ten quintessence scalar field 𝜑CDM models with 

corresponding potentials: 

The quintessence models  

• Ratra–Peebles potential: 𝑉(𝜙) =  𝑉0𝑀𝑝𝑙
2 𝜙−𝛼 , 𝛼 =  𝑐𝑜𝑛𝑠𝑡 >  0 [7] 

• Ferreira–Joyce potential: 𝑉(𝜙) =  𝑉0 𝑒𝑥𝑝(−𝜆𝜙/𝑀𝑝𝑙), 𝜆 =  𝑐𝑜𝑛𝑠𝑡 >  0 [16]  

• Zlatev–Wang–Steinhardt potential: 𝑉 (𝜙) = 𝑉0(𝑒𝑥𝑝(𝑀𝑝𝑙/𝜙)  −  1) [17]  

• Sugra potential: 𝑉(𝜙) =  𝑉0𝜑𝜙−𝜒 𝑒𝑥𝑝(𝛾𝜙2/𝑀𝑝𝑙
2 ), 𝜒, 𝛾 = 𝑐𝑜𝑛𝑠𝑡 > 0 [18] 

• Sahni–Wang potential: 𝑉(𝜙) = 𝑉0(cosh(𝜍𝜙) − 1)𝑔, 𝜍 =  𝑐𝑜𝑛𝑠𝑡 > 0, 𝑔 =  𝑐𝑜𝑛𝑠𝑡 <

 1/2 [19] 

• Barreiro–Copeland–Nunes potential: 𝑉 (𝜙) = 𝑉0(𝑒𝑥𝑝(𝜈𝜙) + 𝑒𝑥𝑝(𝜐𝜙));  𝜈, 𝜐 =

 𝑐𝑜𝑛𝑠𝑡 ≥  0 [20] 

• Albrecht–Skordis potential: 𝑉(𝜙) = 𝑉0((𝜙 –  𝐵)2 + 𝐴)𝑒𝑥𝑝(−𝜇𝜙), 𝐴, 𝐵 =  𝑐𝑜𝑛𝑠𝑡 ≥

 0, 𝜇 =  𝑐𝑜𝑛𝑠𝑡 > 0 [21]  

• Urena–Lopez–Matos potential: 𝑉 (𝜙) = 𝑉0𝑠𝑖𝑛ℎ𝑚(𝜉𝑀𝑝𝑙𝜙), 𝜉 =  𝑐𝑜𝑛𝑠𝑡 >  0, 𝑚 =

 𝑐𝑜𝑛𝑠𝑡 <  0 [22] 

• Inverse exponent potential: 𝑉(𝜙)  =  𝑉0𝑒𝑥𝑝(𝑀𝑝𝑙/𝜙) [23]  

• Chang–Scherrer potential: 𝑉(𝜙) =  𝑉0(1 + 𝑒𝑥𝑝(−𝜏𝜙)), 𝜏 =  𝑐𝑜𝑛𝑠𝑡 >  0 [24] 

 

The phantom models  

• Fifth power potential: 𝑉(𝜙)  =  𝑉0𝜙5 [25]   

• Inverse square potential: 𝑉(𝜙)  =  𝑉0𝜙−2 [25]  

• Exponent potential: 𝑉(𝜙) =  𝑉0 𝑒𝑥𝑝(𝛽𝜙), 𝛽 =  𝑐𝑜𝑛𝑠𝑡 >  0 [25] 

• Quadratic potential: 𝑉(𝜙) =  𝑉0𝜙2 [26]  

• Gaussian potential: 𝑉(𝜙)  = 𝑉0(1 −  𝑒𝑥𝑝(𝜙2/𝜎2));  𝜎 =  𝑐𝑜𝑛𝑠𝑡 [26] 

• Pseudo Nambu-Goldstone boson potential: 𝑉(𝜑) =  𝑉0(1 − 𝑐𝑜 𝑠(𝜙/𝑘)), 𝜅 =
 𝑐𝑜𝑛𝑠𝑡 >  0 [27] 

• Inverse hyperbolic cosine potential: 𝑉(𝜙)  = 𝑉0 (𝑐𝑜𝑠ℎ(𝜓𝜙))−1, 𝜓 =  𝑐𝑜𝑛𝑠𝑡 >  0 [28] 

     We carried out the MCMC analysis to answer the question: "Is it possible to deter-

mine the preferred scalar field 𝜙CDM models compared to the ΛCDM model at present 

epoch using the predicted data from DESI observations [29]?" 

The MCMC analysis based on calculated theoretical model predictions values of: 

• The normalized Hubble parameter for the spatially flat universe:  
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𝐸(𝑧) = 𝐻(𝑧)/𝐻0 = (Ω𝑟0(1 + 𝑧)4  +  𝛺𝑚0(1 +  𝑧)3  +  Ω𝜑(𝑧))1/2 (7) 

here 𝑧 = 1/𝑎 − 1  is a redshift,  𝐻(𝑧) = 𝑎 ̇ /𝑎 is a Hubble parameter; 𝐻0  is a Hubble con-

stant;  Ω𝑟0 , 𝛺𝑚0 and  Ω𝜙  are density parameters at present epoch for radiation, matter and 

scalar field, respectively.                                         

• The angular diameter distance for the spatially flat universe: 

𝑑𝐴(𝑧) =
1

𝐻0 (1 + 𝑧)
 ∫

𝑑𝑧′

𝐸(𝑧′)

𝑧

0

 (8) 

• The combination of the growth rate of the matter density fluctuations and the 

matter power spectrum amplitude 𝒇(𝒂)𝝈𝟖(𝒂)  for each 𝝓CDM model and ΛCDM one. 

The growth rate of the matter density fluctuations is given as: 𝑓(𝑎) = 𝑑𝑙𝑛𝐷(𝑎)/𝑑𝑙𝑛𝑎, 

here 𝐷(𝑎) = 𝛿(𝑎)/𝛿(𝑎0)  is the linear growth factor representing the normalized matter 

density fluctuations 𝛿(𝑎) per the value of those at present epoch 𝛿(𝑎0). The linear growth 

factor is evaluated by solving the linear perturbation equation [30] 

 
,                                                                        

𝐷′′ + (
3

𝑎
+

𝐸′

𝐸
) 𝐷′ −

3𝛺𝑚0

2𝑎5𝐸2
𝐷 = 0 (9) 

 

where a prime denotes a derivative with respect to the scale factor.  

The growth rate of matter density fluctuations 𝑓(𝑎) can be parameterized as 𝑓(𝑎)  ≈

 [Ω𝑚(𝑎)]𝛾(𝑎) [31],   

where  Ω𝑚(𝑎) = Ω𝑚0𝑎−3/𝐸2(𝑎)  is a fractional matter density;  𝛾(𝑎) is the growth in-

dex, which in general is a time-dependent function. 

The growth index 𝛾(𝑎) can be parameterized by a scale factor independent manner, 

so called the Linder 𝛾 - parametrization [32] 
                                                             

𝛾 =  {
0.55 + 0.05(1 + 𝑤0 +  0.5𝑤𝑎), if 𝑤0 ≥ −1; 

0.55 + 0.02(1 + 𝑤0 +  0.5𝑤𝑎), if 𝑤0   < −1.
 (10) 

          

The value of the 𝛾 depends on the characteristics (EoS parameter) of the dark energy 

model being equal to 0.55 for the ΛCDM model [33]. 

The matter power spectrum amplitude 𝜎8(𝑎) = 𝐷(𝑎)𝜎8, here 𝜎8 =  𝜎8 (𝑎0) is the rms 

linear fluctuation in the mass distribution on scales 8ℎ−1𝑀𝑝𝑐, ℎ is a dimensionless nor-

malized Hubble constant, 𝐻0 = 100ℎ 𝑘𝑚 𝑐−1𝑀𝑝𝑐−1. We applied the value of 𝜎8  =  0.815 

obtained by Plank 2015 mission [33]. 

• Our variances correspond to the predicted variances for DESI observations in the 

redshift range    𝒛 ∈ (𝟎. 𝟏𝟓; 𝟏. 𝟖𝟓) 

 To obtain the starting points for MCMC analysis, for each quintessence and phantom 

model, we jointly integrated the Klein-Gordon scalar field equation of motion Eq. (2), the 

Eq. (7), and the linear perturbation equation Eq. (9), for a wide range of model parameters 

and the initial conditions.  For each potential, plausible solutions were found, for which 

the following three criteria had to be fulfilled simultaneously: 

1. The transition between the matter and dark energy equality (Ω𝑚 = Ω𝜑) happens 

relatively recently 𝑧 ∈  (0.6;  0.8); 

2. The growth rate of the matter density fluctuations 𝑓(𝑎) and fractional matter den-

sity Ω𝑚(𝑎) are parameterized by the Linder 𝛾-parametrization Eq. (10); 

3. The EoS parameter predicted by the different dark energy models should be in the 

agreement with the expected EoS parameter value at present epoch (for phantom models 
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𝑤0  <  −1; for the quintessence models with 𝑤0 ∈ (−1; −0.75), taking into account that for 

the freezing type 𝑤𝑎  <  0 and for the thawing type 𝑤𝑎  >  0). 

In the result of the MCMC analysis, for each potential, a posteriori ranges of model 

parameters and initial conditions were obtained, which included the prior ranges of initial 

conditions and model parameters. We calculated the covariance matrix of 𝑑𝐴(𝑧), 𝐸(𝑧), and 

𝑓(𝑧)𝜎8(𝑧) measurements following the standard Fisher matrix approach described in Ref. 

[29]. We assumed 14 000 sq. deg. of sky coverage and wavenumbers up to 𝑘𝑚𝑎𝑥 =

0.2 𝑀𝑝𝑐/ℎ. We also took into account for covariance between measurements within the 

same redshift bin: 𝑑𝐴(𝑧), and 𝐸(𝑧) measurements are negatively correlated by about 40%, 

while correlations with 𝑓(𝑧)𝜎8(𝑧) are below 10% for all redshift bins. 

 To evaluate the quality of various models and distinguish them from each other, we 

applied the obtained posterior ranges of model parameters and initial conditions to con-

duct the Bayesian statistics. For this we calculated the Akaike (AIC) [34] and Schwarz (BIC) 

[35] information criteria, as well as the Bayes evidence.   The AIC and BIC are defined 

respectively as 

 
,                                            

𝐴𝐼𝐶 = −2𝑙𝑛ℒ𝑚𝑎𝑥 + 2𝑘 (11) 

                 

𝐵𝐼𝐶 = −2𝑙𝑛ℒ𝑚𝑎𝑥 + 𝑘𝑙𝑛 (12) 

where 𝑙𝑛ℒ𝑚𝑎𝑥 ∝ exp(−𝜒𝑚𝑖𝑛
2 /2) is the maximum value of the probability function; 𝑁 is a 

number of free parameters, 𝑘 is the number of the observations. 

The Bayes evidence for the model with a set of parameters b is given by the integral 

          

ℰ = ∫ 𝑑3𝒑𝒫(𝒑) (13) 

where 𝒫 is the posterior likelihood, which is proportional to the local density of the 

MCMC points. 

 We also investigated how the various scalar field models can be approximated by 

the CPL parametrization. To this end, we plotted the CPL-ΛCDM 3𝜎 confidence level con-

tours using MCMC technique and displayed on them the largest ranges of the EoS param-

eters values at present epoch for each 𝜙𝐶𝐷𝑀 model, see Fig. (1). These ranges were ob-

tained for different values of model parameters or initial conditions from the prior ranges. 

3. Results and Discussion 

Applying the phenomenological method developed by us, we reconstructed ten 

quintessence and seven phantom scalar field ϕCDM models in the spatially flat universe, 

i.e., we found the prior ranges for initial conditions and free parameters.  

The constraints on dark energy models were obtained by comparing 𝑑𝐴(𝑧), 𝐸(𝑧), and 

𝑓(𝑧)𝜎8(𝑧)  data with the corresponding data generated for the fiducial ΛCDM model us-

ing the DESI observations.  

For each potential, a posteriori ranges of model parameters and initial conditions 

were obtained, which include the prior ranges of initial conditions and model parameters.  

We applied these posterior ranges to conduct the Bayesian statistics. For this aim, we 

calculated the Akaike and Schwarz information criteria, as well as the Bayes evidence. The 

calculated values of AIC and BIC and Bayes factor for all the dark energy models are sum-

marized in Table 1 and in Table 2. These numbers clearly demonstrated that if the ΛCDM 

model is the true description of dark energy, then the full DESI data will be able to 

strongly discriminate most of the scalar field dark energy models currently under consid-

eration. 
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Table 1. The list of the scalar field 𝜙CDM phantom models potentials, ith corresponding AIC, 

BIC, and Bayes factors. 

 

Table 2. The list of the scalar field 𝜙CDM quintessence models potentials, ith corresponding 

AIC, BIC, and Bayes factors. 

 

 We investigated how the dark energy models are mapped on the 𝑤0  −  𝑤𝑎 phase 

space of the CPL -  ΛCDM contours, see Fig. (1).  

 

 

Figure 1. The comparison of the possible (w0, wa) values of the quintessence (left panel) and phan-

tom (right panel) scalar field potentials with the CPL-ΛCDM 3𝜎 confidence level con-

tours. 
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We found that quintessence models: the Ferreira-Joyce, the inverse exponent, the 

Sugra, the Chang-Scherrer, the Urena-Lopez-Matos, the Barreiro-Copeland-Nunes and 

the fifth power phantom model cannot be distinguished from the ΛCDM model at present 

epoch. Whilst quintessence models: the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the 

Albrecht-Skordis, the Sahni-Wang and phantom models: the pseudo-Nambu-Goldstone 

boson, the inverse hyperbolic cosine, the exponent, the Gaussian, the inverse square 

power can either be distinguished or cannot be distinguished from the ΛCDM model at 

present epoch. The phantom quadratic model can be absolutely distinguished from the 

ΛCDM model at the present epoch. 

All the studied models can be divided into two types: models whose evolution de-

pends on the values of the initial conditions and into models whose evolution doesn't 

depend on values of the initial conditions. The first type includes the following quintes-

sence models: the Zlatev-Wang-Steinhardt, the Sahni-Wang and also the phantom models: 

the quadratic, the Gaussian, the fifth power, the inverse square power. The second type 

includes the following quintessence models: the Sugra, the Chang-Scherrer, the Albrecht-

Skordis, the Urena-Lopez-Matos, the Barreiro Copeland-Nunes, as well as the following 

phantom models: the pseudo-Nambu-Goldstone boson, the inverse hyperbolic cosine, the 

exponent. 

4. Conclusions 

We investigated ten quintessence and seven phantom scalar field ϕCDM models in 

the spatially flat universe. We reconstructed these models using the phenomenological 

method developed by us.  

We carried out constraints of scalar field 𝜙CDM models by the predicted DESI data 

applying the MCMC analysis. These constraints were obtained by comparing the normal-

ized Hubble parameter 𝐸(𝑧), the angular diameter distance 𝑑𝐴(𝑧), the combination of the 

growth rate of the matter density fluctuations and the matter power spectrum amplitude 

𝑓(𝑎)𝜎8(𝑎) data with the corresponding data generated for the fiducial ΛCDM model. 

We applied the Bayes statistical criteria to compare the models, such as the Bayes 

factor, as well as the AIC and BIC information criteria. Using the Bayesian statistical anal-

ysis, we could not uniquely identify preferable 𝜙CDM models compared to the fiducial 

ΛCDM model based on the predicted DESI data, so the ΛCDM model is a true model.  

Mapping 𝜙CDM models in the phase space of the CPL-ΛCDM contours, we could 

identify the subclasses of these models, which: i) have the attractor and usual solutions, ii) 

can be distinguished, iii) cannot be distinguished, iv) can be either distinguished or un-

distinguished from the ΛCDM model at present epoch.  
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