

SHOTA RUSTAVELI NATIONAL SCIENCE FOUNDATION OF GEORGIA

Reconstruction, Analysis and Constraints of Cosmological Scalar Field φCDM Models

OLGA AVSAJANISHVILI

E.Kharadze Georgian National Astrophysical Observatory

Based on the paper: Olga Avsajanishvili, Yiwen Huang, Lado Samushia, Tina Kahniashvili, *"The observational constraints on the flat φCDM models"*, Eur. Phys. J. C78, 09, 773; 2018; arXiv:1711.11465

The presentation is supported in part by the Rustaveli National Science Foundation of Georgia under Grant FR-19-8306

The 2nd International Electronic Conference on Universe

February 16 - March 2 2023

Hubble law

$$V = H_0 D$$

 H_0 - Hubble constant
 H_0 = 67.4 km s⁻¹Mpc⁻¹

Accelerated expansion of the Universe

Nobel Prize in Physics 2011

Photo: Lawrence Berkeley National Lab

Saul Perlmutter

National University Brian P. Schmidt Ad

Adam G. Riess

The Nobel Prize in Physics 2011 was awarded "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae" with one half to Saul Perlmutter and the other half jointly to Brian P. Schmidt and Adam G. Riess.

Photo: Belinda Pratten, Australian

Dark Energy?

Modified Gravity?

Figure 4. Hubble diagram for the Union2.1 compilation. The solid line represents the best-fit cosmology for a flat Λ CDM Universe for supernovae alone. SN SCP06U4 falls outside the allowed x_1 range and is excluded from the current analysis. When fit with a newer version of SALT2, this supernova passes the cut and would be included, so we plot it on the Hubble diagram, but with a red triangle symbol.

Dark energy models

- ${\scriptstyle \bullet}$ Cosmological constant, Λ
- Scalar field (quintessence and phantom) models
- K-essence models
- Holographic dark energy models
- Barotropic fluid or Chaplygin gas models
- Coupled dark matter (neutrino)-dark energy models

Cosmological constant

$$S = -\frac{1}{16\pi G} \int d^4x \sqrt{-g} (R+2\Lambda) + S_M$$

- $\Lambda \rightarrow$ "concordance" $\Lambda CDM \mod l$
- \bullet ACDM model provides the best fit for cosmological observations
- \bullet ΛCDM model is based on GTR for description of gravity in the Universe on large scales
- ΛCDM model has:
 - fine tuning problem
 - coincidence problem

Dynamical scalar field φCDM models

The equation of state parameter

where ρ is an energy density, p is a pressure

Phantom and quintessence ϕ CDM models

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_{\rm pl}^2}{16\pi} R + \mathcal{L}_\phi \right] + S_{\rm M}$$

Quintessence

- Spatially uniform dynamical scalar field
- Slowly rolls down to the minimum of its almost flat potential
- This model avoids the fine tuning $\ problem \ of the \ \Lambda CDM \ model$
- Plays a role of the time-dependent cosmological constant

Subdivision of the quintessence models:

• **the thawing models** for which the evolution of the scalar field is fast compared to the Hubble expansion.

 $H < \sqrt{V''(\phi)} - underdamped$ $V(\phi) = M^{4-\alpha} \phi^{\alpha}, \alpha > 0;$ $V(\phi) = M^{4} \exp(-\beta \phi / M_{pl}), \beta < \sqrt{24\pi}$

• the tracking (freezing) models for which the evolution is slow compared to the Hubble expansion:

 $H > \sqrt{V''(\phi)}$ - overdamped

$$V(\phi) = \frac{k}{2} M_{pl}^2 \phi^{-\alpha}, \alpha > 0$$

R.Caldwell & E.Linder, Phys. Rev. Lett. 95, 141301 (2005)

Chevallier-Polarsky-Linder (CPL) parameterization

$$w(a) = w_0 + w_a(1-a)$$

$$w_0 = w(a_0 = 1), w_a = (dw/dz)|_{z=1} = -a^{-2}(dw/da)|_{a=1/2}$$

dw/da > 0 for quintessence thawing models dw/da < 0 for quintessence freezing models

M.Chevallier & D.Polarski, Int. J. Mod. Phys. D 10, 213 (2001)

What is the influence of the dark energy model on the evolution of large-scale structures?

CMB map from Planck space experiment

$$\frac{\Delta T}{T} \sim \frac{\Delta \rho}{\rho} \approx 5 \cdot 10^{-5}$$

Age $\approx 3.8 \cdot 10^5$ years

Cosmic Web (SDSS)

Influence of the ϕ CDM model on the formation of the large-scale structure in the universe

The growth rate

Т

The linear growth factor

$$D'' + \left(\frac{3}{a} + \frac{E'}{E}\right)D' - \frac{3\Omega_{m,0}}{2a^5E^2}D = 0$$
$$D(a) = \frac{\delta(a)}{\delta(a_0)}$$
$$\delta = \frac{\rho(\vec{r},t) - \langle \rho \rangle}{\langle \rho \rangle} \qquad \delta(a_{in}) = \delta'(a_{in}) = 5 \cdot 10^{-5}$$

The matter density fluctuations

F. Pace, J.-C. Waizmann and M. Bartelmann, Mon. Not. Roy. Astron. Soc. 406, 1865 (2010)

 $f(a) = \frac{d\ln D(a)}{d\ln a}$

γ - parameterization

- Fractional matter density
- Growth rate function

$$\Omega_{\rm m}(a) = \frac{\Omega_{\rm m0}a^{-3}}{E^2}$$
$$f(a) = \frac{d\ln D(a)}{d\ln a}$$

Fitting formula

 $f(a) \approx \Omega_{\rm m}^{\gamma}(a), \quad \gamma \text{ is a growth index}$ L.M.Wang & P.J. Steinhardt, Astrophys. J. 508, 483 (1998)

For the Λ CDM model $\gamma \approx 0.55$, while for the Dvali-Gabadadze-Porrati braneworld model $\gamma \approx 0.68$

$$\gamma = \begin{cases} 0.55 + 0.05(1 + w_0 + 0.5w_a), & \text{if } w_0 \ge -1 \\ 0.55 + 0.02(1 + w_0 + 0.5w_a), & \text{if } w_0 < -1 \\ w_0 = w(a_0 = 1), w_a = (dw/dz)|_{z=1} = -a^{-2}(dw/da)|_{a=1/2} \end{cases}$$
Erick Linder, Phys. Rev. D 72, 043529 (2005)

Phantom Potentials

Name	Form	Reference
Fifth power	$V(\phi) = V_0 \phi^5$	Scherrer & Sen
		(2008a)
Inverse square power	$V(\phi) = V_0 \phi^{-2}$	Scherrer & Sen
		(2008a)
Exponent	$V(\phi) = V_0 \exp(\beta \phi), \ \beta = \text{const} > 0$	Scherrer & Sen
		(2008a)
Quadratic	$V(\phi) = V_0 \phi^2$	Dutta & Scherrer
		(2009)
Gaussian	$V(\phi) = V_0(1 - \exp(\phi^2/\sigma^2)), \sigma = \text{const}$	Dutta & Scherrer
		(2009)
pseudo-Nambu-	$V(\phi) = V_0(1 - \cos(\phi/\kappa)), \kappa = \text{const} > 0$	Frieman et al.
Goldstone boson (pNGb)		(1995)
Inverse hyperbolic cosine	$V(\phi) = V_0(\cosh(\psi\phi))^{-1}, \ \psi = \text{const} > 0$	Dutta & Scherrer
		(2009)

Quintessence Potentials

Form	Reference
$V(\phi) = V_0 M_{\rm pl}^2 \phi^{-\alpha}; \ \alpha = \text{const} > 0$	Ratra & Peebles $(1988b)$
$V(\phi) = V_0 \exp(-\lambda \phi / M_{\rm pl}); \ \lambda = \text{const} > 0$	Ferreira & Joyce (1998)
$V(\phi) = V_0(\exp(M_{\rm pl}/\phi) - 1)$	Zlatev et al. (1999)
$V(\phi) = V_0 \phi^{-\chi} \exp(\gamma \phi^2 / M_{\rm pl}^2);$	Brax & Martin
$\chi, \gamma = \text{const} > 0$	(1999)
$V(\phi) = V_0(\cosh(\varsigma\phi) - 1)^g;$	Sahni & Wang
$\varsigma = \text{const} > 0, \ g = \text{const} < 1/2$	(2000)
$V(\phi) = V_0(\exp(\nu\phi) + \exp(\nu\phi));$	Barreiro et al.
$\nu, v = \text{const} \ge 0$	(2000)
$V(\phi) = V_0((\phi - B)^2 + A) \exp(-\mu\phi);$	Albrecht & Skordis
$A, B = \text{const} \ge 0, \ \mu = \text{const} > 0$	(2000)
$V(\phi) = V_0 \sinh^m(\xi M_{\rm pl}\phi);$	Urena-Lopez &
$\xi = \text{const} > 0, \ m = \text{const} < 0$	Matos (2000)
$V(\phi) = V_0 \exp(M_{\rm pl}/\phi)$	Caldwell & Linder
	(2005)
$V(\phi) = V_0 (1 + \exp(-\tau \phi)); \ \tau = \text{const} > 0$	Chang & Scherrer
	(2016)
	Form $V(\phi) = V_0 M_{\rm pl}^2 \phi^{-\alpha}; \ \alpha = \text{const} > 0$ $V(\phi) = V_0 \exp(-\lambda \phi/M_{\rm pl}); \ \lambda = \text{const} > 0$ $V(\phi) = V_0 (\exp(M_{\rm pl}/\phi) - 1)$ $V(\phi) = V_0 (\exp(M_{\rm pl}/\phi) - 1)$ $V(\phi) = V_0 (\phi^{-\chi} \exp(\gamma \phi^2/M_{\rm pl}^2); \ \chi, \gamma = \text{const} > 0$ $V(\phi) = V_0 (\cosh(\varsigma \phi) - 1)^g; \ \varsigma = \text{const} > 0, \ g = \text{const} < 1/2$ $V(\phi) = V_0 (\exp(\nu \phi) + \exp(\nu \phi)); \ \nu, \ \nu = \text{const} \ge 0$ $V(\phi) = V_0 ((\phi - B)^2 + A) \exp(-\mu \phi); \ A, \ B = \text{const} \ge 0, \ \mu = \text{const} > 0$ $V(\phi) = V_0 \sinh^m(\xi M_{\rm pl}\phi); \ \xi = \text{const} > 0, \ m = \text{const} < 0$ $V(\phi) = V_0 \exp(M_{\rm pl}/\phi)$ $V(\phi) = V_0 (1 + \exp(-\tau \phi)); \ \tau = \text{const} > 0$

$Phantom \ \phi CDM \ model$

- The first Friedmann's equation $E(z) = H(z)/H_0 = (\Omega_{r0}(1+z)^4 + \Omega_{m0}(1+z)^3 + \Omega_{\phi}(z))^{1/2}$
- The scalar field equation
- The energy density of the scalar field

$$\ddot{\phi} + 3H\dot{\phi} - \frac{\partial V(\phi)}{\partial \phi} = 0$$
$$\rho_{\phi} = -\frac{\dot{\phi}^2}{2} + V(\phi)$$
$$p_{\phi} = -\frac{\dot{\phi}^2}{2} - V(\phi)$$
$$w_{\phi} = \frac{-\dot{\phi}^2/2 - V(\phi)}{-\dot{\phi}^2/2 + V(\phi)}$$

• The pressure of the scalar field

- The equation of state parameter
- We consider the flat universe

Quintessence ϕ CDM model

- $E(z) = H(z)/H_0 = (\Omega_{\rm r0}(1+z)^4 + \Omega_{\rm m0}(1+z)^3 + \Omega_{\phi}(z))^{1/2}$ The first Friedmann's equation ٠ $\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$ The scalar field equation ٠ $\rho_{\phi} = \frac{\dot{\phi}^2}{2} + V(\phi)$ The energy density of the scalar field ٠ $p_{\phi} = \frac{\dot{\phi}^2}{2} - V(\phi)$ The pressure of the scalar field • $w_{\phi} = \frac{\phi^2/2 - V(\phi)}{\dot{\phi}^2/2 + V(\phi)}$ The equation of state parameter ٠
- We consider the flat universe

Criteria for Selection of Solutions

We have found the solutions describing the reliable universe, for which the following three criteria must be simultaneously fulfilled:

- 1. The matter and DE equality $(\Omega_{\rm m} = \Omega_{\phi})$ has happened relatively recently, $a \in (0.6; 0.8)$;
- 2. The growth rate of the matter density fluctuations, f(a), and the fractional matter density, $\Omega_{\rm m}(a)$, are parametrized by the Linder γ -parametrization, $f(a) \approx \Omega_{\rm m}^{\gamma}(a)$;
- 3. The chosen current EoS parameters values should correspond to the expected current EoS parameter values for these models: for the phantom models $w_0 < -1$; for the quintessence models $-1 < w_0 < -0.75$: for the freezing type dw/da < 0, for the thawing type dw/da > 0.

Phantom potentials	Free parameters	
$V(\phi) = V_0 \phi^5$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(10^{-3} \div 10^{-2}) \end{array} $	$\phi_0(3.37 \div 3.94) \\ \phi_0(523 \div 563.6)$
$V(\phi) = V_0 \phi^{-2}$	$ \begin{array}{l} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(30 \div 50) \end{array} $	$\phi_0(2.83 \div 5.15)$ $\phi_0(471.4 \div 600)$
$V(\phi) = V_0 \exp(\beta \phi)$	$ \begin{array}{l} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(1 \div 20) \end{array} $	$ \begin{array}{l} \beta(0.08 \div 0.3) \\ \phi_0(0.2 \div 9.14) \\ \dot{\phi_0}(79.8 \div 830.9) \end{array} $
$V(\phi) = V_0 \phi^2$	$ \begin{array}{l} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(1 \div 20) \end{array} $	$\phi_0(0.67 \div 2.8)$ $\dot{\phi}_0(191 \div 450)$
$V(\phi) = V_0(1 - \exp(\phi^2/\sigma^2))$	$ \begin{array}{l} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(5 \div 30) \end{array} $	$\sigma(5 \div 30) \phi_0(0.67 \div 2.8) \phi_0(191 \div 450)$
$V(\phi) = V_0(1 - \cos(\phi/\kappa))$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(1 \div 4) \end{array} $	$\kappa(1.1 \div 2) \phi_0(2.3 \div 3.37) \phi_0(420 \div 500)$
$V(\phi) = V_0(\cosh(\psi\phi))^{-1}$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(10^{-3} \div 10^2) \end{array} $	$\psi(10^{-3} \div 1) \\ \phi_0(1.4 \div 2.3) \\ \dot{\phi_0}(310 \div 420.7)$

Model Parameters and Initial Conditions for Phantom Potentials

Quintessence potentials	Free parameters	
$V(\phi) = V_0 M_{\rm pl}^2 \phi^{-\alpha}$	$\begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \end{array}$	$V_0(3 \div 5) \\ \alpha(10^{-6} \div 0.7)$
$V(\phi) = V_0 \exp(-\lambda \phi/M_{\rm pl})$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(10 \div 10^3) \end{array} $	$\lambda(10^{-7} \div 10^{-3}) \phi_0(0.2 \div 1.6) \phi_0(79.8 \div 338.9)$
$V(\phi) = V_0(\exp(M_{\rm pl}/\phi) - 1)$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(10 \div 10^2) \end{array} $	$\phi_0(1.5 \div 10) \\ \phi_0(350 \div 850)$
$V(\phi) = V_0 \phi^{-\chi} \exp(\gamma \phi^2 / M_{\rm pl}^2)$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(10^{-2} \div 10^{-1}) \\ \chi(4 \div 8) \end{array} $	$\gamma(6.5 \div 7) \\ \phi_0(5.78 \div 10.55) \\ \phi_0(680.6 \div 879)$
$V(\phi) = V_0 (\cosh(\varsigma \phi) - 1)^g$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(5 \div 8) \\ \varsigma(0.15 \div 1) \end{array} $	$g(0.1 \div 0.49) \phi_0(1.8 \div 5.8) \phi_0(360 \div 685)$
$V(\phi) = V_0(\exp(\nu\phi) + \exp(\upsilon\phi))$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(1 \div 12) \end{array} $	$\nu(6 \div 12) \phi_0(0.014 \div 1.4) \dot{\phi}_0(9.4 \div 311)$
$V(\phi) = V_0((\phi - B)^2 + A) \exp(-\mu\phi)$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(40 \div 70) \\ A(1 \div 40) \end{array} $	$B(1 \div 60) \\ \mu(0.2 \div 0.9) \\ \phi_0(5.8 \div 8.45) \\ \phi_0(681 \div 804.5)$
$V(\phi) = V_0 \sinh^m(\xi M_{\rm pl}\phi)$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(1 \div 10) \\ m(-0.1 \div -0.3) \end{array} $	$ \begin{aligned} &\xi(10^{-2} \div 1) \\ &\phi_0(0.5 \div 2.5) \\ &\phi_0(190 \div 367) \end{aligned} $
$V(\phi) = V_0 \exp(M_{\rm pl}/\phi)$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(10^2 \div 10^3) \end{array} $	$\phi_0(5.78 \div 10.55)$ $\phi_0(680.6 \div 879)$
$V(\phi) = V_0(1 + \exp(-\tau\phi))$	$ \begin{array}{c} H_0(50 \div 90) \\ \Omega_{\rm m0}(0.25 \div 0.32) \\ V_0(1 \div 10^2) \end{array} $	$\tau(10 \div 10^2) \phi_0(0.01 \div 0.075) \phi_0(9.4 \div 32)$

Model Parameters and Initial Conditions for Quintessence Potentials

MCMC Analysis

• The normalized Hubble parameter: $E(z) = H(z)/H_0 = (\Omega_{r0}(1+z)^4 + \Omega_{m0}(1+z)^3 + \Omega_{\phi}(z))^{1/2}$

The angular diameter distance:
$$d_A(z) = \frac{1}{H_0(1+z)} \int_0^z \frac{dz'}{E(z')}$$

• The combination of the growth rate of the matter density fluctuations and the matter power spectrum amplitude, $f(a)\sigma_8(a)$:

 $\sigma_8(a) \equiv D(a)\sigma_8, \ \sigma_8 = 0.815$ (Planck 2015 results. XIII)

• The range of the redshift values, $z \in (0.15; 1.85)$

٠

• The variances correspond to the predicted values for DESI data

A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H. J. Seo and A. Slosar, JCAP 1405, 023 (2014)

MCMC Results

The 2σ confidence level contours for pairs of the free parameters $(k, \Omega_{\rm m0}, h, V_0, \phi_0, \phi_0)$, for which the ϕ CDM model with the phantom pseudo-Nambu-Goldstone boson potential $V(\phi) = V_0(1 - \cos(\phi/\kappa))$ is in the best fit with the Λ CDM model.

MCMC Results

The 2σ confidence level contours for pairs of the free parameters $(V_0, \Omega_{m0}, h, \phi_0, \phi_0)$, for which the ϕ CDM model with the Zlatev-Wang-Steinhardt potential $V(\phi) = V_0(\exp(M_{\rm pl}/\phi) - 1)$ is in the best fit with the Λ CDM model.

MCMC Results

The 2σ confidence level contours plots for various pairs of the free parameters (α , $\Omega_{\rm m0}$, h), for which the ϕ CDM model with the Ratra-Peebles potential $V(\phi) = V_0 M_{\rm pl}^2 \phi^{-\alpha}$ is in the best fit with the Λ CDM model.

MCMC analysis with upcoming DESI data

Carrying out the MCMC analysis with upcoming DESI data, we obtained ranges of α and $\Omega_{\rm m}$ parameters, $0 < \alpha \leq 0.16$ and $0.296 < \Omega_{\rm m} < 0.32$ at 3σ confidence level, where the Ratra-Peebles ϕ CDM model is compliance with the Λ CDM model.

Bayesian Statistics

Akaike information criterion

 $AIC = -2 \ln \mathcal{L}_{\max} + 2k,$ $\mathcal{L}_{\max} \propto \exp(-\chi_{\min}^2/2)$

 \boldsymbol{k} is the number of observations

Akaike, H. (1974), IEEE Transactions on Automatic Control 19(06), 716-723

Schwarz information criterion

$$BIC = -2\ln\mathcal{L}_{\max} + k\ln N,$$

N is the number of the model parameters

Schwarz, G. E. (1978), Annals of Statistics 06(02), 461–464

$$\mathcal{E} = \int \mathrm{d}^3 p \mathcal{P}(p),$$

 \mathcal{P} is the posterior likelihood

Bayes evidence

Bayesian Statistics for the Phantom Potentials

Phantom potentials	AIC	BIC	Bayes factor
$V(\phi) = V_0 \phi^5$	10.0	18.7	0.0921
$V(\phi) = V_0 \phi^{-2}$	10.0	18.7	0.0142
$V(\phi) = V_0 \exp(\beta \phi)$	22.4	12.0	0.0024
$V(\phi) = V_0 \phi^2$	10.0	18.7	0.0808
$V(\phi) = V_0(1 - \exp(\phi^2/\sigma^2))$	12.0	22.4	0.0113
$V(\phi) = V_0(1 - \cos(\phi/\kappa))$	12.0	22.4	0.0061
$V(\phi) = V_0(\cosh(\psi\phi))^{-1}$	12.0	22.4	0.0056

Bayesian Statistics for the Quintessence Potentials

Quintessence potentials	AIC	BIC	Bayes factor
$V(\phi) = V_0 M_{\rm pl}^2 \phi^{-\alpha}$	10	18.7	0.5293
$V(\phi) = V_0 \exp(-\lambda \phi / M_{\rm pl})$	12	22.4	0.0059
$V(\phi) = V_0(\exp(M_{\rm pl}/\phi) - 1)$	10	18.7	0.0067
$V(\phi) = V_0 \phi^{-\chi} \exp(\gamma \phi^2 / M_{\rm pl}^2)$	14	26.2	0.0016
$V(\phi) = V_0 (\cosh(\varsigma \phi) - 1)^g$	14	26.2	0.0012
$V(\phi) = V_0(\exp(\nu\phi) + \exp(\nu\phi))$	14	26.2	0.0053
$V(\phi) = V_0((\phi - B)^2 + A) \exp(-\mu\phi)$	16	29.9	0.0034
$V(\phi) = V_0 \sinh^m(\xi M_{\rm pl}\phi)$	14	26.2	0.0014
$V(\phi) = V_0 \exp(M_{\rm pl}/\phi)$	10	18.7	0.0077
$V(\phi) = V_0(1 + \exp(-\tau\phi))$	12	22.4	0.0024

Phantom φ**CDM Models** in the CPL Phase Space

Quintessence ϕ CDM Models in the CPL Phase Space

Subclasses of the Potentials

Attractor solution	Usual solution	
Sugra	Zlatev-Wang-Steinhardt	
Urēna-López-Matos	Sahni-Wang	
Albrecht-Scordis	quadratic	
Chang-Scherer	Gaussian	
Barreiro-Copeland- Nunes	fifth power	
pNGb	inverse square	
inverse hyperbolic cosine		
exponent		

Subclasses of the Potentials

Undistinguished from ΛCDM model	Undistinguished or Distinguished from ΛCDM model	Distinguished from Λ CDM model
Ferreira-Joyce	Ratra-Peebles	phantom quadratic
inverse exponent	Zlatev-Wang-Steinhardt	
Sugra	Albrecht-Skordis	
Chang-Scherrer	Sahni-Wang	
Urēna-López-Matos	pNGb	
Barreiro-Copeland-Nunes	inverse hyperbolic cosine	
fifth power	exponent	
	Gaussian	
	inverse square	

Conclusion

1) We reconstructed quintessence and phantom scalar field ϕ CDM models using the phenomenological method developed by us.

2) Using the Bayesian statistical analysis, we could not uniquely identify the preferable ϕ CDM models compared to the fiducial Λ CDM model based on the predicted DESI data, and the Λ CDM model is a true model.

- 3) Mapping ϕ CDM models in the phase space of the CPL-ACDM contours, we could identify the subclasses of these models, which:
- i) have the attractor and usual solutions,
- ii) can be distinguished from the ΛCDM model,
- iii) cannot be distinguished from the ΛCDM model,

iv) can be either distinguished or undistinguished from the Λ CDM model at present epoch.

Thank You for Your Kind Attention!