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Abstract: Flood is one of the most damaging natural hazards, and timely detection of it is very 

important to save human lives and assess the level of damage. The occurrence of floods in cloudy 

weather conditions makes the use of radar-based sensors for real-time flood mapping inevitable. In 

the present study, the ETCI 2021 flood event detection competition dataset, organized by the NASA 

Advanced Concepts and Implementation Team in collaboration with the IEEE GRSS Geoscience 

Informatics Technical Committee, has been used. Moreover, we have utilized the U-Net and X-Net 

architecture as a segmentation model to map flooded regions. This study aimed to identify the 

optimum polarization of the Sentinel-1 satellite for flood detection. By examining and comparing 

the obtained results, it was observed that the VV polarization offered better results in both models. 

Furthermore, U-Net had better performance than X-Net in both polarizations. 
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1. Introduction 

Flooding is one of the most common and destructive natural hazards that occurs 

when the water level of rivers rises and excess water flows into the dry river bed. 

Therefore, quick and timely flood detection is essential for saving human lives and 

assessing damages. This issue highlights the importance of using advanced tools to 

quickly and accurately identify flooded areas so that the evacuation process can be started 

more quickly. With the improvements in satellite technologies, remote sensing has 

become one of the most suitable and cost-effective ways of mapping large-scale floods. 

Nowadays, valuable satellite data is freely available thanks to projects like Landsat and 

Sentinel. However, there is still the need for developing efficient detection systems that 

can extract useful information from these data. When it comes to flood mapping, active 

radar satellites are the best choice due to the excessive rainfall and cloudy conditions 

while flooding, rendering the use of optical satellites impractical. Regarding the mapping 

algorithm, typical SAR image processing frameworks are usually time-consuming and 

computationally demanding. Thus, machine learning techniques are the preferable choice 

to mitigate these drawbacks.  

Machine learning [1,2] and deep learning [3,4] methods have been responsible for a 

lot of advancements in different remote sensing fields in recent years including flood 
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mapping. Nemani et al. [5] labeled the UNOSAT dataset manually with a histogram-

based method and trained the U-Net and XNet models. To improve the efficiency of the 

algorithm, they used the ResNet Backbone. Katyar et al. [6] used the Sen1floods11 dataset 

and examined two types of manual labels and weak labels, and trained U-Net and SegNet 

in three modes of Sentinel-1 and Sentinel-2 images. Using the SAR data of the Sentinel-1 

A/B satellite, Kim et al. [7] trained the U-Net and SegNet models. The result of this 

research indicated that the performance of the U-Net model was better than the SegNet 

model, but SegNet achieved faster run times.  

Zhang et al. [8] used a multi-source satellite dataset including the Gaofen series and 

Zhuhai-1 hyperspectral images and trained the U-Net model which had a good 

performance for identifying and monitoring flood areas. Ghosh et al. [9] implemented U-

Net and a Feature Pyramid Network (FPN), both based on the EfficientNet-B7 backbone. 

They evaluated the performance of the models using the Sentinel-1 images. Using several 

machine learning methods including MLP, SVM, and a deep neural network (DNN), 

Islam et al. [10] identified flood areas in SPOT-5 and radar image sets. Tanim et al. [11] 

evaluated the performance of supervised and unsupervised machine learning models 

including Random Forest, SVM, and Maximum Likelihood using Sentinel-1 satellite 

images.  

In this paper, we present an automatic flood detection and mapping framework based 

on deep learning. We utilized the ETCI 2021 flood event detection competition dataset 

which was collected from Sentinel-1 images in two polarizations of VV and VH. To 

evaluate the effect of polarization on the segmentation performance, we implemented U-

Net and X-Net models and separately trained them on VV and VH images. By assessing 

the trends in the results of the two models, the best polarization can be determined.  

2. Study Area and Dataset 

2.1. Study Area 

The dataset in question was collected from three different regions of Nebraska in the 

center of the United States, Alabama in the southeast of the United States, and Bangladesh 

in the southeast of Asia under different conditions. Each one of these regions contained 

12, 16, and 3 full-frame images respectively. Moreover, the images were acquired in 2017 

and 2019 in different months of the year. Figure 1. depicts the spatial distribution of the 

dataset.  

2.2. Dataset Description and Pre-Processing 

The ETCI 2021 dataset has not been used in many studies which leaves room for 

further experimentation. It provides Sentinel-1 images obtained in Interferometric Wide 

mode with a resolution of 5×20 meters which featured labeled pixels before and after the 

flood [12]. This dataset contains 33405 image patches in each polarization of VV and VH 

with a size of 256×256 pixels. There are separate binary ground truth images for water 

bodies and floods in each patch, with the latter one being the focus of this study.  
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                                Figure 1. Red dots indicate the locations in ETCI 2021 flood detection dataset. 

Two pre-processing steps have been conducted on the dataset to prepare it for the 

training. To begin with, no-data patches, i.e. patches containing no flood pixels, were 

removed from the dataset. Upon investigating the remaining patches, it was revealed that 

a big proportion of the pixels in many of these patches were not flooded. Such an 

imbalance can have a significant impact on the performance of the model and should be 

reduced [5]. To tackle this data imbalance, a threshold of 5% was set on the flood pixels in 

each patch to further filter the dataset. This process assures that at least 5% of the pixels 

in each patch contain flooding, so the deep learning network can be trained better. Finally, 

30% of the remaining patches were dedicated to testing and validation while the rest were 

used for training. The pre-processing steps of the dataset are shown in Figure 2. 

 

Figure 2. Pre-processing steps. 

3. Methodology 

Convolutional neural networks (CNN) have been developed for many computer 

vision tasks like object detection and semantic segmentation. In this paper, we 

implemented the U-Net and X-Net architectures for flood mapping and evaluated the 

performance of the trained networks. Both models use encoder and decoder modules. The 

encoder module includes a series of convolution layers for feature extraction, along with 

max-pooling layers that perform downsampling. The decoder is applied after feature 

extraction and performs upsampling to create a segmentation mask with the same 

dimensions as the input. The decoder also consists of convolutional layers that allow the 

extraction of additional features and thus produce a dense feature map [13].  

The final convolutional layer features the Sigmoid activation function to produce the 

binary classification output while the rest of the layers use the ReLU activation. Cross-

entropy is a typical loss function that most models use; however, it does not offer a proper 

performance when dealing with imbalanced datasets. One good substitute in this 



Proceedings 2022, 69, x FOR PEER REVIEW 4 of 8 
 

 

situation is the dice loss function [14]. Equation 1  shows the dice loss function, where 𝑝 

and 𝑔 represent the prediction and ground truth images respectively. The added 1 in the 

numerator and denominator is to prevent potential undefined values. 

Dice loss = 1 − 
2 𝑝. 𝑔 + 1

𝑝 + 𝑔 + 1
                                   

(1) 

The encoder branch of the U-Net includes 4 convolutional blocks, each one with batch 

normalization and max pooling layers. When reaching the bottleneck the convolutional 

block excludes the max pooling so that the decoding can start. The decoder branch repeats 

the same convolution operation but uses transpose convolution to retrieve the resolution. 

It takes 4 blocks in the decoder to rebuild the original image resolution. Another major 

feature of the U-Net is the concatenation process that transfers the outputs from each block 

in the encoder to the corresponding block in the decoder. Figure. 3 depicts the general 

scheme of the U-net model. 

 

Figure 3. U-Net model architecture. 

X-Net shares the same basic elements as U-Net but introduces a major change in the 

flow of the features. Instead of 4 convolutional blocks in the decoder, it uses 3 before the 

bottleneck section followed by 2 blocks of decoding. From here on, the output features 

enter another encoder and reach the second bottleneck after 2 convolutional blocks. Finally, 

the second decoder upsamples the outputs to generate the initial resolution. Overall, X-Net 

is two U-Net models connected in a sequence. 
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Figure 4. X-Net model architecture. 

4. Results and Discussion 

In order to assess the performance of the trained models, we utilized the five different 

evaluation metrics of accuracy, precision, recall, F1-score, and intersection over union 

(IOU). The formulas for these criteria are as follows in which TP, TN, FP, and FN represent 

the parameters of the confusion matrix. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

(5) 

𝐼𝑂𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(6) 

The best metrics to evaluate the model performance are F1-score and IOU as they 

consider the overlap between the prediction and ground truth images. It is especially 

important in this study because of the imbalanced dataset. Table 1 represents the 

quantitative results of U-Net and X-Net in two polarizations of VV and VH. 

Table 1. Quantitative results of the trained models. 

Model Polarization Accuracy Precision Recall F1 Score IoU 

U-Net 

VH 97.39 84.18 68.80 72.43 64.46 

VV 97.32 83.16 74.10 75.80 67.35 

X-Net 

VH 96.95 83.10 68.00 71.22 62.54 

VV 97.23 82.18 70.64 72.98 64.38 
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Overall, VV polarization offered better performance both in U-Net and X-Net with a 

difference of 2.89% and 1.84% in the IoU score respectively compared to VH polarization. 

The F1-score and recall also show similar trends; however, VH achieved slightly better 

results in the precision score in both models. When comparing the models, U-Net 

outperformed X-Net in both polarizations and all the metrics. The highest IoU score is 

67.35% which is not far from the highest IoU score ever achieved using the ETCI-2021 

dataset (76.54%) [12]. However, directly comparing this result with the outputs of this 

study is not fair. That is because the main focus of this study is to find the optimum 

polarization and model to facilitate the further ablation studies that are usually required 

for suggesting the best possible model. The visual outputs of the testing phase of U-Net 

and X-Net are depicted in figures 5 and 6 respectively. 

 

Figure 5. Visual outputs of U-Net model. (a) VH image, (b) VV image, (c) ground truth, (d) VH 

prediction, (e) VV prediction. 

The visual outputs of both models demonstrate the expected results from the 

quantitative outputs. As can be seen in figures 5 and 6, VH polarization in both models 
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introduced noticeable artifacts compared to the VV polarization. Moreover, the former 

polarization was not able to detect flooded pixels to the same efficiency as the latter, hence 

achieving higher false negatives. As a result, VV could produce more detailed outputs 

while better maintaining sharp edges. Regarding the inter-model comparisons, the same 

trends in the polarizations apply to the models, with U-Net achieving better visual 

outputs. 

 

Figure 6. Visual outputs of X-Net model. (a) VH image, (b) VV image, (c) ground truth, (d) VH 

prediction, (e) VV prediction. 

5. Conclusion 

Timely detection of flooded areas is of key importance to mitigate the damages of this 

devastating natural hazard. Although a big archive of radar imagery is available free of 

charge, there is a need for a proper framework that can efficiently extract the flooded 

regions. This study aimed to facilitate this process by examining two polarizations of 

Sentinel-1 as well as two deep segmentation models. The ETCI 2021 flood event detection 
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competition dataset was used to train the models and the outputs were compared by 

different evaluation metrics. The VV polarization offered better results compared to VH 

in U-Net and X-Net with an IoU score of 67.35% and 64.38% respectively. Moreover, U-

Net outperformed X-Net with the IoU of VH polarization being 64.46% which is higher 

than both polarizations in X-Net. The four testing scenarios proved that it is best to focus 

on U-Net and VV polarization to further enhance the segmentation outputs. As a result, 

polarization and model architecture can be excluded in an ablation study to maximize the 

performance, reducing the number of testing scenarios and the run times substantially. 
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