Synthesis of some polycyclic aryls by haloaryl coupling with zinc dust – (trialkyl)ammonium formate reagent.

Vladimir N. Bulavka
Slavich Company,
Mendeleev sq. 2, Pereslavl-Zalesskiy, Yaroslavl region, 152020, Russian Federation.
E-mail: v.bulavka@mail.ru

Keywords: Ullmann reaction, haloaryl coupling, biaryls, polyaryls, zinc dust, ammonium formate, trialkylammonium formate.

Abstract. The method for coupling of haloaryls to polycyclic aryls with zinc dust and (trialkyl)ammonium formate in an inert atmosphere was extended for polycyclic haloaryls.

Polycyclic aryls during last decades serves as half-products and desired substances for photoconductive electrophotographic (for example, triphenylbenzene derivatives [1]) and organic electroluminescence (for example, 9,9’-bianthryl derivatives [2]) devices. Usually biaryls are prepared by Ullmann reaction [3]. Plurality of alternative methods also were elaborated (see references in [4, 5]). One of them, elaborated recently, is action of zinc dust and (trialkyl)ammonium formate on haloaryls in methanolic medium and inert atmosphere [4, 5]. We have extended above method for some polycyclic haloaryls.

Thus, 4-iodobiphenyl and 4-bromobiphenyl Ia,b were coupled with zinc dust and ammonium trialkylformates (R = CH3, C2H5) to p-querterphenyl II with high yield.

Similarly, 2-iodofluorene III was coupled to correspondent 2,2’-bifluoryl IV with zinc dust and ammonium formate (R = H) with some lower yield.

5-Bromoacenaphtene V was coupled to 1,1’,2,2’-tetrahydro-5,5’-biacenaphthyl VI with zinc dust and trimethylammonium formate (R = CH3) with moderate yield.

Similarly, 9-bromophenanthrene VII was coupled to 9,9’-biphenanthryl VIII with some lower yield.

Coupling of 9-haloanthracenes IXa,b with zinc dust and ammonium formates (R = H, C2H5) proceeds with low yield of 9,9’-bianthryl X.

The results of reduction are summarised in Table.

<table>
<thead>
<tr>
<th>No. of run</th>
<th>Starting compound</th>
<th>R</th>
<th>Obtained compound</th>
<th>Yield, %</th>
<th>m. p., °C</th>
<th>m.p. [lit]), °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ia</td>
<td>C2H5</td>
<td>II</td>
<td>91</td>
<td>m.p. 316-319</td>
<td>m. p. 320 [3]</td>
</tr>
<tr>
<td>2</td>
<td>Ib</td>
<td>CH3</td>
<td>II</td>
<td>96</td>
<td>m.p. 317-320</td>
<td>m. p. 320 [3]</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>H</td>
<td>IV</td>
<td>90</td>
<td>m.p.316-318</td>
<td>m.p.316.5-318 [6]</td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>CH3</td>
<td>VI</td>
<td>73</td>
<td>m.p. 175-178</td>
<td>m.p. 176-178 [7]</td>
</tr>
<tr>
<td>5</td>
<td>VII</td>
<td>CH3</td>
<td>VIII</td>
<td>70</td>
<td>m.p. 187-189</td>
<td>m.p. 188-189 [8]</td>
</tr>
<tr>
<td>6</td>
<td>IXa</td>
<td>C2H5</td>
<td>X</td>
<td>17</td>
<td>m. p. 310-312</td>
<td>m.p. 310-312 [9]</td>
</tr>
</tbody>
</table>
As it was shown, the yield of desired coupling product decreases from high for ortho-unsubstituted to moderate for monoortho-substituted and low for diortho-substituted haloaryls.

Experimental.

General procedure.

To 0.01 mol of aryl halide and 0.01 mol of zinc dust in 50 ml of methanol 0.02 mol of (trialkyl)ammonium formate and 0.01 mol of sodium hydroxide were added. The reaction mixture was stirred and heated with reflux condenser at reflux under N₂ or Ar during 4 hours. After cooling reaction mixture was filtered, residue washed with benzene and water, benzene layer was separated, washed with water and dried over sodium sulphate. After filtration benzene was evaporated on rotatory evaporator under reduced pressure. The residue was subjected for chromatography on silica gel to obtain of pure desired product.

References