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Abstract: In a recent paper [1] a new conformally flat metric was introduced, describing an ex-

panding scalar field in a spherically symmetric geometry. The spacetime can be interpreted as a 

Schwarzschild-like model with an apparent horizon surrounding the curvature singularity. For the 

above metric, we present the complete conformal Lie algebra consists of a six-dimensional subal-

gebra of isometries (Killing Vector Fields or KVFs) and nine proper conformal vector fields (CVFs). 

An interesting aspect of our findings is that there exists a gradient (proper) conformal symmetry 

(i.e., its bivector Fab vanishes) which verifies the importance of gradient symmetries in constructing 

viable cosmological models. In addition, the 9-dimensional conformal algebra implies the existence 

of constants of motion along null geodesics that allow us to determine the complete solution of null 

geodesic equation. 
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1. Introduction 

Conformal symmetries have been the subject of various studies during the last three 

decades (see e.g., [2,3]). In the majority of the cases, the main reason to investigate the 

existence of conformal symmetries in General Relativity was the reduction of the com-

plexity of the resulting system of partial differential equations (pdes) in order to locate, 

more easily, an exact solution of the Einstein Field Equations (EFEs). However, as the 

generality of the underlying geometry is increased the symmetry pdes and the equation 

of motion become progressively highly non-linear and often lead to models without a 

clear physical meaning. On the other hand, there are sufficiently enough cases where 

physically sound models admit a conformal symmetry (proper or not) that represents an 

inherent constituent of their kinematical and dynamical structure. The most well known 

example of this situation is the isotropic, homogeneous and conformally flat Fried-

mann-Lemaître cosmological model which admits a 9-dimensional Lie algebra of proper 

Conformal Vector Fields (CVFs) [4]. In addition it has been shown that proper CVFs are 

of particular interest to construct viable astrophysical models [5–7] and at the same time 

it has been established the significant role of self-similar spacetimes, admitting a proper 

Homothetic Vector Field (HVF), since they represent the past and future (equilibrium) 

states for a vast number of evolving vacuum and −  law perfect fluid models [8,9]. 

Throughout this paper, the following conventions have been used: the spacetime 

signature is assumed ( )+++− ,,, , lower Latin letters denote spacetime indices 

3,2,1,0,..., =ba  and we use geometrized units such that 18 == cG . 
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In a recent paper [1] a new conformally flat metric was found, describing an ex-

panding scalar bubble within a spherically symmetric geometry having a Schwarz-

schild-like behaviour. The solution (up to some integration constants) has the form: 
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where the metric of spacetime is:  

 

( ) ( ) .sin, 22222222  ddrdrdtrtds +++−= C  (2) 

The existence of a CVF X  implies that under the infinitesimal transformation generated 

by X , the spacetime metric abg  satisfies:  

 

abab gg 2=XL  (3) 

           

where L  is the Lie derivative along X  and )(X  denotes the conformal factor rep-

resenting the scale deformation of the spacetime geometry. 

The above general condition (proper CVF) specializes to a Killing Vector Field (KVF) 

( 0)( =X ), to a Homothetic Vector Field (HVF) ( =)(X  const. 0 ) and to a Special 

Conformal Killing Vector (SCKV) when 0; =ab  (" ; " stands for the covariant deriva-

tive w.r.t metric abg ). 

The simplest case of a spacetime geometry admitting a maximum of 15 CVFs, is the 

Minkowski spacetime with metric, in Cartesian coordinates, of the form: 

 

.22222 dzdydxdds +++−= 
FLAT  (4) 

The complete Lie Algebra of CVFs for the metric (4) has been determined and con-

sists of a subalgebra of 10 KVFs, 1 proper HVF and 4 SCKVs as follows1 [10]:  

 

zyx ==== 4321 ,,, XXXX   

 

zyzxyx yzxzxy +−=−=+−= 765 , XXX  

 

 

1We recall that the vectors 41 XX −  correspond to translations, 75 XX −  to spatial rotations, 108 XX −  to spacetime rotations (boosts), 

11X  represents the generator of the homothety and the vectors 1512 XX −  are the SCKVs. 
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zyx zyx +=+=+=   1098 , XXX  

 

zyx zyx +++= 11X  

 

( ) zyx zyxzyx ++++++=   2222222

12X  

 

( ) zyx xzxyzyxx ++−−++= 222 2222

13  X  

 

( ) zyx yzzxyxyy +−−+++= 222 2222

14  X  

 

( ) .222 2222

15 zyx yxzyzxzz −−++++=  X  

 

For the purposes of the present work, it is convenient to transform the metric (4) and 

the CVFs in a form such that the geometry is foliated by spherically symmetric 2D 

hypersurfaces i.e., with constant and positive ( 1+ ) curvature. We exploit the coordinate 

transformation ( ) ( ) ,,,,,, rtzyx → :  

 

( ) ( )  sinsin,,,,,,, rrtxtrt ==  

 

( ) ( ) .cos,,,,sincos,,,  rrtzrrty ==  

 

The Minkowski metric is written:  

 

( )2 2 2 2 2 2 2sinds dt dr r d d  = − + + +
FLAT

 

 

whereas the CVFs take the form: 
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The CVFs of the conformally related metric (2) are also given by 151 XX −  with 

conformal factors derived from the relation:  

 

    ababab gg ])(ln[2)( 2 +== CCLL XXX 
 

(5) 

where ,ab  is the flat metric and the conformal factors of the Minkowski spacetime 

respectively.  

Using equation (5) we determine straightforwardly, the conformal factors of the 

metric (2):  

 

    ttt ,3,2,1 )(lncossin))(lnsinsin))(ln) CCC  === (X(X(X  
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0))))(lncos) 765,4 ==== (X(X(X(X  tC  

 

])(ln)(ln[cossin)])(ln)(ln[sinsin) ,,9,,8 trtr rtrt CCCC +=+=  (X(X  

 

trtr rtrt ,,11,,10 )(ln)(ln1)])(ln)(ln[cos) CCCC ++=+= (X(X   

 

tr trtrt ,

22

,12 ))(ln()(ln22) CC +++=(X  

 

]))(ln()(ln22[sinsin) ,
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]))(ln()(ln22[cos) ,

22

,15 rt trtrr CC +++=  (X
       (6)

 

 

It is easily verified from equations (6), that the CVFs 1098 XXX ,,  are reduced to 

KVFs for the line element (2) with metric function ( )rt,C  given in (1) and represent 

space-time boosts. Note also that the 9-dimensional Lie Algebra of proper CVFs given above 

can be used, in general, to determine the general solution of the null geodesic equation. In 

fact the existence of a proper CVF X  implies that there is a constant of motion along 

null geodesics ( 0=a

ann , 0; =b

ba nn ) [6]:  

( ) .0;;;
==+= ba

ab

ba

ba

ba

ba

b

b

a

a nngnnXnnXnnX   

3. Results and Discussion 

The spacetime (1)-(2) is a solution of the field equations with a minimally coupled 

with gravity scalar field. It is straightforward to see that the CVF rt rt +=11X
 
is a 

gradient (proper) conformal symmetry (i.e., its bivector Fab vanishes) that verifies the 

importance of gradient symmetries in constructing viable cosmological models. Our 

findings also indicate an eventually close connection between these classes of models and 

the existence of a gradient CVF, so far underestimated. 
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