

Digital polarization holography: challenges and opportunities

Rakesh Kumar Singh

Home | Optics Lab | Information photonics and optical metrology |

<u>Varanasi</u>

Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India

> krakeshsingh.phy@iitbhu.ac.in krakeshsingh@gmail.com

International conference on: Holography meets Advanced manufacturing, University of Tartu, Estonia: 20-22 Feb 2023

Outline

- Background
- Optical Imaging
- Digital Holography
 - Recording and reconstruction of wavefront
 - Polarization holography
 - Jones matrix imaging
- Randomness assisted imaging
 - Speckle illumination polarization holography
 - Stokes holography
 - Holography with higher order Stokes correlations
- Conclusion

Optical Imaging

*Replica at imaging plane

Imaging lens

Microscopy: improvement in resolution possible by tailored illumination

*Holography: Provides 3D complex field reconstruction

Optical imaging through randomness

Phase objects

- Transparent specimen
- Do not absorb or scatter light
- Instead produces a phase change of light

Quantitative Phase Imaging

Holography

Gabor's Holography: In line Holography

 $I = |U|^2$ = $|O + R|^2$ = $|O|^2 + |R|^2 + O^*R + OR^*$ = $I_o + I_r + 2\sqrt{I_o I_r} \cos\varphi$

J. Goodman, Fourier Optics

Polarization

***Polarization ellipse representation**

$$\tan 2\psi = 2 \frac{E_{0x} E_{0y} \cos \delta}{E_{0x}^2 - E_{0y}^2}$$
$$\tan \alpha = \frac{E_{0y}}{E_{0x}}$$
$$\sin 2\chi = (\sin 2\alpha) \sin \delta$$

***Poincare representation**

$$S_{0} = E_{x}^{*}E_{x} + E_{y}^{*}E_{y}$$

$$S_{1} = E_{x}^{*}E_{x} - E_{y}^{*}E_{y}$$

$$S_{2} = E_{x}^{*}E_{y} + E_{y}^{*}E_{x}$$

$$S_{3} = i\left[E_{y}^{*}E_{x} - E_{x}^{*}E_{y}\right]$$

$$\sqrt{I^{(1)}(Q_{1},\omega)I^{(2)}(Q_{2},\omega)} \Big[\mu(Q_{1},Q_{2};\omega) \exp\{ik(R_{1}-R_{2})\} + \mu(Q_{2},Q_{1};\omega) \exp\{-ik(R_{1}-R_{2})\} \Big]$$

$$\mu(Q_{1},Q_{2};\omega) = \frac{\langle E^{*}(Q_{1},\omega)E(Q_{2},\omega)\rangle}{\sqrt{I^{1}(Q_{1},\omega)I^{2}(Q_{2},\omega)}}$$

✓ coherent light sources makes high visibility fringe

M. Born and E. Wolf, Principle of Optics

Generalized Interferometry

 $S_n(r) = S_n^1(r) + S_n^2(r) + 2\sqrt{S_0^1(r)S_0^2(r)} \left| S_n(Q_1, Q_2) \right| \cos\left\{ \arg\left[S_n(Q_1, Q_2) - k(R_1 - R_2) \right] \right\}$

 $S_{0}(Q_{1},Q_{2}) = \eta_{xx}(Q_{1},Q_{2}) + \eta_{yy}(Q_{1},Q_{2})$ $S_{1}(Q_{1},Q_{2}) = \eta_{xx}(Q_{1},Q_{2}) - \eta_{yy}(Q_{1},Q_{2})$ $S_{2}(Q_{1},Q_{2}) = \eta_{xy}(Q_{1},Q_{2}) + \eta_{yx}(Q_{1},Q_{2})$ $S_{3}(Q_{1},Q_{2}) = i \Big[\eta_{yx}(Q_{1},Q_{2}) - \eta_{xy}(Q_{1},Q_{2}) \Big]$

 $\eta_{ij}(Q_1, Q_2) = \frac{W_{ij}(Q_1, Q_2)}{\sqrt{trW(Q_1)trW(Q_2)}}$

In general four kind of polarization modulation takes place
Only one (first one) in conventional holography

T. Setala, J. Tervo, and A. Friberg, Opt. Lett 31 (2006) 2208

K. Oka and T. Kaneko, Opt. Express 11,1510 (2003)

Angular & Polarization multiplexing

Opt. Lett. 41 (2016) 906

Imaged orthogonally polarized components

Biological cells

Liquid crystal droplets

Light matter interaction: Jones matrix

Jones matrix formalism

$$\begin{pmatrix} E'_{x} \\ E'_{y} \end{pmatrix} = \begin{pmatrix} j_{xx} & j_{xy} \\ j_{yx} & j_{yy} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix}$$

Jones matrix microscopy from a single shot measurment

OF TECHNOLOG

Jones matrix microscopy: multiplexed hologram

Opt. Lett. 42 (2017) 5194

Recovered Jones matrix elements

Jxx

Opt. Lett. 42 (2017) 5194

Speckle field digital polarization holography

Optics Letter 44 (2019) 5711

Enhanced resolution

Optics Letter 44 (2019) 5711

MO=5X & 0.1NA

Reconstruction of polarization holograms

 $S_n(r) = S_n^1(r) + S_n^2(r) + 2\sqrt{S_0^1(r)S_0^2(r)} \left| S_n(Q_1, Q_2) \right| \cos\left\{ \arg\left[S_n(Q_1, Q_2) - k(R_1 - R_2) \right] \right\}$

Polarization imaging with correlations

- 1. Stokes Holography, Opt. Lett. 39 (2012) 966
- Phase shifting holography with HBT method- Opt. Letter 45 (2020) 212; Opt. Express 28 (2020) 8145
- 3. HBT with polarized light: Opt. Express 26 (2018) 10801
- 4. Holography with higher order Stokes correlations, Phys. Rev. A 106 (2022) 013508

Holography with Stokes correlations

Holography with higher order Stokes correlations

Recording of Hologram **Object**

Reconstruction of Hologram

Phys. Rev. A 106 (2022) 013508

Holography with Stokes correlation

The correlation between SPs fluctuations is

$$\begin{split} C_{nm}(\Delta r) = <\Delta S_{n}\Delta S_{m} >, \\ \begin{pmatrix} C_{00}(\Delta r) & C_{01}(\Delta r) & C_{02}(\Delta r) & C_{03}(\Delta r) \\ C_{10}(\Delta r) & C_{11}(\Delta r) & C_{12}(\Delta r) & C_{13}(\Delta r) \\ C_{20}(\Delta r) & C_{21}(\Delta r) & C_{22}(\Delta r) & C_{23}(\Delta r) \\ C_{30}(\Delta r) & C_{31}(\Delta r) & C_{32}(\Delta r) & C_{33}(\Delta r) \end{pmatrix} \end{split}$$

Using un-polarized source: $W_{xy}(\Delta r) W_{yx}^{*}(\Delta r)=0$

$$C_{22}(\Delta r) = \operatorname{Re}[W_{xx}(\Delta r)W_{yy}^{*}(\Delta r)]$$
$$C_{32}(\Delta r) = i\operatorname{Im}[W_{xx}(\Delta r)W_{yy}^{*}(\Delta r)]$$

 $C(\Delta r) = C_{22}(\Delta r) + iC_{32}(\Delta r)$

Phys. Rev. A 106 (2022) 013508

Experimental measured Stokes parameters :(a)-(b) for l=txperimental measured Stokes parameters :(a)-(b) for l=txperimenta

Conclusion:

Polarization digital holography (PDH) is discussed and described in the context of recovery and reconstruction of the complete wavefront
Few experimental designs of the PDH are discussed
A possible extension of the digital holography with random light is also discussed

Acknowledgement

INSERB DIA

CORE/2019/000026

SIR INDIA

080(0092)/2020/EMR-II

DEPARTMENT OF BIOTECHNOLOGY

Ministry of Science & Technology Government of India

> BT/PR35557/MED/707 /2019

58/14/0/2021-BRNS/37092

Dr. Vinu R V & Dr. Darshika Singh, IIST-Trivandrum Former master students: Niraj Soni, Atul Somukuwar, Annie Varghese, Sreelal M,

