

unclonable functions in the Fresnel domain

Vinny Cris M^a,*, Shashi Prabhakar^b, Harsh Vardhan^a, Ravi Kumar^a, Salla Gangi Reddy^a, Sakshi^c, RP Singh^b a Department of Physics, SRM University - AP, Andhra Pradesh - 522502, India b Physical Research Laboratory, Navrang Pura, Ahmedabad-380009, India c Ben-Gurion University of the Negev, P. O. Box 653, Beer-Sheva 8410501, Israel

> To design a new asymmetric optical cryptosystem using PUFs

- \succ To enable multiuser capability using polar decomposition method.
- \succ To study the key sensitivity and robustness of the proposed method.

Objectives

Theory $A(x, y) = (\exp(i\pi f(x, y)) * PUF1)$ $A'(x,y) = \mathfrak{I}_{\lambda}^{d_1}[A(x,y)]$ $PD\{real\{A'(x,y)\}\} = [R \quad U \quad V]$

 $B(x'',y'') = \mathfrak{I}_{\lambda}^{d_1}[R(x',y')]$

- difficult to replicate which improves the
- \succ The sensitivity of all the keys is also
- \succ The work is a subject of our ongoing research and will be presented in detail

- 2. Nischal, K.N. Optical Cryptosystems; IOP Publishing Ltd: Bristol,
- 3. Javidi, B. et.al, Roadmap on Optical Security, Journal of Optics 2016,
- 4. Kumar, R.; Quan, C. Asymmetric multi-user optical cryptosystem

118-126;