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Abstract: Lung Cancer is one of the deadliest cancers, responsible for more than 1.80 million deaths 

annually worldwide, and it is on the priority list of WHO. In the current scenario, when cancer cells 

become resistant to the drug, making it less effective leaves the patient in vulnerable conditions. To 

overcome this situation, researchers are constantly working on new drugs and medications that can 

help fight drug resistance and improve patients’ outcomes. In this study, we have taken five main 

proteins of lung cancer, namely RSK4 N-terminal kinase, guanylate kinase, cyclin-dependent kinase 

2, kinase CK2 holoenzyme, tumour necrosis factor-alpha and screened the prepared Drug Bank li-

brary with 1,55,888 compounds against all using three Glide-based docking algorithms namely 

HTVS, standard precision and extra precise with a docking score ranging from −5.422 to −8.432 

Kcal/mol. The poses were filtered with the MM\GBSA calculations, which helped to identify Imid-

azolidinyl urea C11H16N8O8 (DB14075) as a multitargeted inhibitor for lung cancer, validated with 

advanced computations like ADMET, interaction pattern fingerprints. Further, it is proposed to op-

timise the compound with Jaguar and MD Simulation for at least 100 ns with NPT ensemble class 

to analyse the deviation and fluctuations and possible interactions for stability and experimental 

validation on the A549 cell line. 
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1. Introduction 

This study is majorly focused on repurposing a drug that can act against multiple 

protein targets and have the slightest chance to develop resistance as there are various 

interacting residues. The possibility is significantly less as all the interacting residues have 

to be gone through the mutation, which is not easily possible, making it less chance to 

develop resistance [1–4]. In lung cancer, many proteins participate directly and indirectly, 

and influencing their role can be a significant asset for multitargeted drug design. In lung 

and bladder cancer cells, RSK4 N-terminal kinase (PDBID: 6G77) promotes drug re-

sistance and metastasis, and it is one of the essential proteins for the study because inhib-

iting it in-vitro and in-vivo in a tail vein injection model made tumour cells more suscep-

tible to treatment and prevented metastasis [5]. The human guanylate kinase, or hGMPK 

(PDBID: 6NUI), is the only enzyme that produces cellular GDP, which is necessary for 

cellular viability and proliferation. Additionally, hGMPK has been given a crucial role in 

the metabolic activation of prodrugs that contain nucleoside analogues that are antiviral 

and antineoplastic. The production of the nucleotide building blocks of DNA, RNA, and 

cGMP depends on the hGMPK, and cancer cells have higher GTP levels [6]. The CDK2 

gene in humans encodes the cyclin-dependent kinase 2 (PDBID: 1AQ1), also known as 

cell division protein kinase 2 or Cdk2. This gene produces an SER/THR protein kinase that 

belongs to the cyclin-dependent kinase family [7]. The casein kinase-2 holoenzyme 
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(PDBID: 1JWH) is a protein serine/threonine kinase typically found in tetrameric com-

plexes of two alpha catalytic subunits and two regulatory beta subunits. It is traditionally 

categorised as a messenger-independent protein kinase. Phosphorylates many substrates, 

regulates several signalling pathways, is connected to numerous human disorders in can-

cer, and controls nearly all malignant markers, which is best understood. Other prominent 

roles for CK2 in human infections include the usage of host cell CK2 by various viruses 

for their life cycles [8]. The tumour necrosis factor-alpha (PDBID: 1TNF) is the potent para-

crine and endocrine modulator of inflammatory and immunological processes and regu-

lates various types of cell growth and differentiation, and altered cells are destroyed ex-

plicitly, especially when combined with interferons [9]. All the above-cited five kinases 

and proteins are crucial for developing lung cancer cells, and their continuous prolifera-

tion and finding a drug candidate that can potentially target them together can be a great 

asset.  

2. Methods 

2.1. Protein Preparation and Ligand Library Collection and Preparation 

The proteins were identified through literature reviews and searched for in 

https://www.rcsb.org/ for 3-D protein structures [10]. We identified RSK4 N-terminal ki-

nase (PDBID: 6G77) [5], human guanylate kinase or hGMPK (PDBID: 6NUI) [6], cyclin-

dependent kinase 2 (PDBID: 1AQ1) [7], casein kinase-2 holoenzyme (PDBID: 1JWH) [8], 

and tumour necrosis factor-alpha (PDBID: 1TNF) [9]. All five proteins were downloaded 

and imported to Schrodinger’s Maestro workspace for preparation optimisation and min-

imisation. The protein preparation workflow (PPW) was used to prepare the proteins [10–

12]. 6G77 contains a dimer of two chains and two ligands bound to each chain with sol-

vents and two zinc metals; only chain A was kept, and everything was removed. In 6NUI, 

only chain A found and kept the same, while in 1AQ1, chain A found with solvents and 

ligands, so we removed the solvent before preparations. 1JWH contains four chains with 

ligands, solvents and metal zinc and phosphates, and each was removed except chain A 

and the bound ligand, while in the case of 1TNF, we kept only chain A out of four chains. 

In preprocess tab of PPW, we capped the termini of each protein, filled missing side 

chains, assigned bond orders to the CCD database, replaced hydrogen, and created zero 

bond orders and disulphide bonds [12]. Termini oxygen was added to protein chains, con-

verted selenomethionines to methionine, filled missing loops with Prime, generated the 

hetero state with Epik at pH 7 ± 2 and set only one state best to process further [13,14]. In 

the optimisation of hydrogen bond assignments tab, sample water orientation and used 

crystal symmetry to get the best-fitted state and minimised hydrogen of altered species 

and used PROPKA for the optimisation. Further, in the minimisation and delete water 

tab, converge heavy atoms to RMSD 0.30 Å , delete water beyond 5 Å  to the ligand, and 

minimise with the OPLS4 force field [15].  

At the same time, the complete Drug Bank library from http://go.drugbank.com/ was 

downloaded [16,17]. The LigPrep tool was used to prepare the ligand library, where we 

browsed the complete library and kept the filter size to 500 atoms and beyond that was 

dropped, and the below 500 atoms ligands were initially minimised with the OPLS4 

forcefield [15,18]. The ionisation was kept generating possible states at a target pH of 7 ± 

2 while using the Epik and adding the metal binding states, including the original state 

and desalt, to generate tautomers [13]. The stereoisomer computations were kept retaining 

specified chiralities and generating 32/ligand in the SDF file that generated 1,55,888 ligand 

states.  

2.2. Glide Grid Generation and Multitargeted Molecular Docking 

The receptor Grid Generation tool was used to generate the grids on each protein 

individually, and for the case of 1AQ1 and 1JWH, the native ligand site was selected, 
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while in the case of proteins with no ligand such as 6G77, 6NUI, 1TNF, the complete pro-

tein residues were selected under grid for blind docking to find the best docking poses 

[19]. For the molecular docking, we used the virtual screening workflow (VSW) tool, 

where we browsed the prepared ligand library as a ligand source, used the combined 

input files, and redistributed for sub job was checked [11]. In the filter tab, QikProp and 

Lipinski’s rule was checked to ensure only ligands satisfying the criteria of drug candidate 

pass to the following screening level and then prepared girds were added [20]. In the 

docking tab, we used the Epik state penalties for the docking and the screening with the 

High Throughput Virtual Screening (HTVS), Standard Precision (SP) Docking, and Extra 

Precise (XP) Docking and then the poses were post-processed with the Molecular Mechan-

ics based Generalised Born Surface Area (MM\GBSA) calculations [11]. The flexible dock-

ing strategy was used where only the top 5% of data from HTVS was passed to SP, and 

10% of the SP was passed to XP. The minimisation from XP was performed after docking 

and generated up to 4 poses from each compound state, and then 100% of compounds 

were passed to the MM\GBSA computations [3,4].  

2.3. ADMET and Interaction Fingerprinting Analysis 

The compound’s ADMET was computed using the QikProp and Schrodinger’s maes-

tro and produced the number of amidine, acid, amide, rotor, rtvFG, CNS, mol MW, dipole, 

SASA, FOSA, FISA, PISA, WPSA, donor hydrogen bonds, accepter hydrogen bonds, and 

% of human oral absorption, with Lipinski’s rule of 5 and 3 [20] and have computed many 

more ADMET values. Further, molecular interaction patterns or fingerprints are a sum-

mary of the interactions between a drug and a set of proteins, and it is often used in drug 

discovery and development to predict the potential therapeutic effects and side effects of 

a drug. The interaction fingerprint tool generated the fingerprints among the proteins and 

identified the compound Imidazolidinyl urea. The receptor-ligand complexes were gen-

erated after merging them individually. Then we selected any contact option and aligned 

the sequences while keeping 6G77 as a reference sequence to define the N and C terminal 

of the protein and generate the fingerprints. The complete matrix was then plotted for any 

contact, ligand display property was selected to the docking score and coloured main plot 

to the residue number sequences to identify initial and ending residues. Further, only in-

teracting residues were taken to eliminate the noise and understand it better while taking 

the count of ligand interactions and count of residue interaction to understand which 

amino acids are participating more from which protein with the ligand [11].  

3. Results and Discussion 

3.1. Interaction Analysis 

The multitargeted potency of the drugs has been identified with extra precise dock-

ing and MM\GBSA computations through individual sampling and computations in 

sheets with the help of produced scores. The RSK4 N-terminal kinase (PDBID: 6G77) in 

complex with Imidazolidinyl urea has formed eight hydrogen bonds among the LYS213, 

ARG156 and O atom, and GLN100, LEU101, ASP153 and OH atoms, and ASP153, 

PHE154, and NH atoms (Figure 2) while producing the docking score of −6.723 Kcal/mol 

and MM\GBSA score of −34.67 Kcal/mol (Table 1). The Human guanylate kinase or 

hGMPK (PDBID: 6NUI) in complex with Imidazolidinyl urea has formed six hydrogen 

bonds among the O atom and THR83 and SER37, and NH atoms and ASP52, SER35, 

GLU72 (Figure 2) while producing the docking score of −7.147 (Kcal/mol) and MM\GBSA 

score of −48.55 (Kcal/mol) (Table 1). The cyclin-dependent kinase 2 (PDBID: 1AQ1) in com-

plex with Imidazolidinyl urea has produced eight hydrogen bonds among the ASP145, 

GLN131, ASP86, LEU83 and NH atoms, and LEU83, GLU12 with O atoms and GLU12 has 

also interacted with OH atom (Figure 2) while producing the docking score of −7.945 

Kcal/mol and MM\GBSA score of −42.95 Kcal/mol (Table 1). The casein kinase-2 holoen-

zyme (PDBID: 1JWH) in complex with Imidazolidinyl urea has formed eight hydrogen 
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bonds among the ASH175, LYS68, LYS77, LYS49, TYR50, SER51 and O atoms, and LYS68 

and OH atom (Figure 2) while producing the docking score of −6.635 Kcal/mol and 

MM\GBSA score of −42.82 Kcal/mol (Table 1). The tumour necrosis factor-alpha (PDBID: 

1TNF) in complex with Imidazolidinyl urea has formed five hydrogen bonds among the 

ALA33, ARG32 and ACE5 with NH atoms (Figure 2) while producing the docking score 

of −5.422 Kcal/mol and MM\GBSA score of −38.16 Kcal/mol (Table 1). Overall molecular 

docking and Prime MM\GBSA results are beyond satisfaction in terms of the scoring and 

the number of hydrogen bonds. The H-bonds play a significant role in the binding affinity 

among the Imidazolidinyl urea and the proteins, and it significantly influences the con-

formation and stability of a protein-ligand complex and increases its affinity for the pro-

tein. The Glide searches for potential binding sites on the protein and generates a list of 

possible poses for the ligand, and then evaluates the stability of each pose by calculating 

the energy of the complex pose with the lowest energy considered for further analysis 

because of their stability and best fit for the protein-ligand complex.  

 

Figure 2. Showing the ligand interaction diagram (LID) with 3-D snaps to clarify where the ligand 

is binding to the proteins and 2-D representation study the interacting atoms, residues with types 

and bonds. 

Table 1. Showing the docking score (Kcal/mol), MM\GBSA score (Kcal/mol), and other important 

computations produced during the molecular docking process. 

S. No. PDB ID Docking Score 
MM\GBSA 

dG Bind 

Rotatable 

Bonds 
Evdw Ecoul 

1 6G77 −6.723 −34.67 12 −27.324 −22.436 

2 6NUI −7.147 −48.55 12 −34.682 −10.659 

3 1AQ1 −7.945 −42.95 12 −45.501 −13.995 

4 1JWH −6.635 −42.82 12 −42.71 −18.582 

5 1TNF −5.422 −38.16 12 −29.631 −14.062 
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3.2. ADMET and Interaction Pattern Identification 

The ADMET properties were computed with the help of the QikProp tool, and the 

same values were used to filter against the compounds with Lipinski’s rules. The com-

pound has obtained 5 stars out of 5 as the ADMET values perfectly match the standard 

values and with the lowest toxicity. Imidazolidinyl urea has zero amines, amidine, acid, 

amide, rotor, and rtvFG and is inactive for the central nervous system. The compound’s 

molecular weight is 388.296, and the atoms numbers are below 500 atoms and can be con-

sidered among the novel drug candidates. The dipole, SASA, FOSA, FISA and volume of 

the compounds are 13.717, 590.656, 162.601, 428.055, and 1034.87, respectively, while the 

PISA and WPSA values are zero. Additionally, the compound can donate 2.5 hydrogen 

bonds and accept 8.9 hydrogen bonds. Further, an extended table is provided (Table 2) to 

understand each descriptor of the compound against the standard values. The interaction 

fingerprints of the compound were computed to understand the compound’s diversity of 

the interacting residues. Imidazolidinyl urea has interacted with the protein with the mid-

dle and ending residues RSK4 N-terminal kinase (6G77) and the human guanylate kinase 

or hGMPK (6NUI) while with cyclin-dependent kinase 2 (1AQ1), casein kinase-2 holoen-

zyme (1JWH) and tumour necrosis factor-alpha (1TNF) it has interacted with the initial 

residues. ARG156 from 6G77, 6NUI and 1AQ1 was the most interacting residues that 

formed three interactions and then GLN181, GLY82, SER83, VAL87, GLN100, LEU101, 

TYR102, ALA103, LYS105, PHE154, and ASP216 are the one that has formed at least two 

interactions among the selected proteins. 1AQ1 is the protein that has formed the most 

interaction, and then 1JWH, followed by 6NUI, 6G77 and 1TNF, has interacted with the 

Imidazolidinyl urea (Figure 3).  

Table 2. Showing the ADMET properties produced by QikProp with descriptors. 

Descriptor Imidazolidinyl Urea Descriptor Imidazolidinyl Urea 

#stars 5 QPlogS −1.348 

#amine 0 CIQPlogS −2.753 

#amidine 0 QPlogHERG −1.409 

#acid 0 QPPCaco 0.381 

#amide 2 QPlogBB −3.985 

#rotor 8 QPPMDCK 0.242 

#rtvFG 0 QPlogKp −8.64 

CNS −2 IP(eV) 10.085 

mol MW 388.296 EA(eV) 0.341 

dipole 13.717 #metab 4 

SASA 590.656 QPlogKhsa −1.17 

FOSA 162.601 HumanOralAbsorption 1 

FISA 428.055 % HumanOralAbsorption 0 

PISA 0 SAfluorine 0 

WPSA 0 SAamideO 44.64 

volume 1034.87 PSA 289.333 

donorHB 2.5 #NandO 16 

accptHB 8.9 RuleOfFive 2 

dip^2/V 0.1818131 RuleOfThree 1 

ACxDN^.5/SA 0.0238246 #ringatoms 10 

glob 0.8376977 #in34 0 

QPpolrz 30.125 #in56 10 

QPlogPC16 11.394 #noncon 2 

QPlogPoct 21.625 #nonHatm 27 
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QPlogPw 18.019 Jm 0 

QPlogPo/w −2.194   

 

Figure 3. Showing the interaction fingerprints of interacting atoms with residues of Imidazolidinyl 

urea and RSK4 N-terminal kinase (6G77), human guanylate kinase or hGMPK (6NUI), cyclin-de-

pendent kinase 2 (1AQ1), casein kinase-2 holoenzyme (1JWH) and tumour necrosis factor-alpha 

(1TNF) with the ligand and residue interaction counts. The C and N terminals are shown with dif-

ferent colours to make it clear with the interaction, and the counts are plotted adjacent to the PDBs.  

4. Conclusions 

The treatment of lung cancer has come a long way in recent years, thanks to modern 

drug designing techniques that allowed us to create more effective and safer drugs and 

reduce the risk of drug resistance. By using targeted drug therapies and allosteric regula-

tors, we can improve the effectiveness of the drugs and reduce the risk of side effects. 

However, it is easier to develop resistance to this strategy. We also see several break-

throughs in past years, giving us hope for a more effective treatment for lung cancer. In 

this study, we have identified Imidazolidinyl urea, which is used as a cosmetic preserva-

tive and is an antimicrobial compound that effectively acts against multiple protein tar-

gets and has the potency to reduce cancer cells. The molecular docking, fingerprinting 

with interaction patterns, and MM\GBSA calculation helped to understand the multitar-

geted potency of the compound. 
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