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Abstract: We propose a hyperspectral broadband phase retrieval technique with spectrally varying 1

object and modulation phase masks. The technique is based on a complex domain version of the 2

alternating direction method of multipliers (ADMM) and the Spectral Proximity Operators derived 3

for Gaussian and Poisson intensity observations, which are considered as a sum of separate spectral 4

diffractive patterns. The proximity operators filter noisy observations compromising between noisy 5

intensity observations and their predicted counterparts and retrieve the complex-domain spectral 6

components of the object from these filtered observations. The simulation and physical tests confirm 7

that the broadband hyperspectral phase retrieval in the proposed formulation is resolved. 8

Keywords: Hyperspectral imaging; sparse representation; noise filtering; phase imaging. 9

1. Introduction 10

Hyperspectral imaging (HSI) is a well-known technique for spectral observations. It is 11

used in various applications, e.g., earth surface remote sensing [1], medical and bio-medical 12

diagnostics [2]. HSI retrieves information based on images obtained across a wide spectrum 13

range with hundreds to thousands of spectral channels. These images are stacked in 3D 14

cubes, where the first two dimensions are spatial coordinates, and the third dimension is a 15

spectral channel, represented by either wavenumber or wavelength. 16

Phase HSI is a special class of HSI where images of interest are complex-valued, and 17

both phase and amplitude are visualized. It is a promising technique because the amount 18

of retrieved information is doubled compared to real-valued HSI. It goes directly from 19

the nature of complex-domain imaging, where each image is complex-valued with phase 20

and amplitude. Phase brings information about the light delay refracted/transmitted 21

from/through an object. This delay might be recalculated into valuable information, e.g., 22

dry mass [3], refractive index[4], or thickness [5]. 23

Recently, HS digital holography has been developed, which, additionally to conven- 24

tional holography, is able to recover spectrally resolved phase/amplitude information 25

(e.g. [6,7]). In our previous papers [8–10], the phase HSI formulation was done for the 26

observation model provided that the parametric model of the object is known and has been 27

used for phase delay recalculation between spectral channels. As a result, the HS absolute 28

phases of the object are reconstructed. In papers [8–10] we use an observation model where 29

separate diffraction patterns are registered for separate wavelengths and masks. More close 30

papers are [11,12] where we base our algorithms on the Fourier spectroscopy. In [11] we 31

use the model for the object with the connection between the spectral phases through the 32

thickness. However, the proposed new model for phase HSI is different from the Fourier 33

spectroscopy approach as it does not use any instruments for spectral analysis such as 34

the harmonic reference beams and precise scanning phase delay stages [6,7]. The spectral 35

resolution for our approach is based on the diversity of spectral properties of the image 36

formation operators and masks [13]. 37
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In this paper, we consider the formulation of the HS phase retrieval for a spectrally 38

varying object from intensity observations (1)-(2) with spectrally varying image formation 39

operators. The developed algorithm is derived from the variational formalization of the 40

problem based on the alternating-direction method of multipliers (ADMM) for complex- 41

valued variables and the novel Spectral Proximity Operators obtained for Gaussian and 42

Poisson observations. Computations for these operators are reduced to the solution of the 43

sets of cubic (for Gaussian observations) and quadratic (for Poisson observations) algebraic 44

equations. The model of an object Uo,k is unknown and is not exploited in the algorithm. 45

2. Hyperspectral phase imaging 46

To solve the lensless phase retrieval problem, we utilize random phase masks Mt,k ∈ 47

CT×N which, along with propagation operator At,k, encode information about an object 48

Uo,k into the observations Yt [14]: 49

Yt = ∑
k∈K

|At,k(Mt,k ◦ Uo,k)|2, t = 1, ..., T, (1)

where Yt ∈ RN , and At,k ∈ CK×N is an image formation operator modeling propagation of 50

2D object images from the object plane to the sensor, ’◦’ stands for the element-by-element 51

product of two vectors. For the object of interest, it is the vector Uo,k ∈ CK×N , N = nm, 52

where n and m are width and height of 2D image; k stays for the spectral variable.The HS 53

phase retrieval is a reconstruction of a complex-valued object Uo,k ∈ CK×N , k ∈ K, from 54

these intensity measurements Yt (1). For essential noisy observations with additive noise εt, 55

observations Yt are complemented by noise εt: 56

Zt = Yt + εt, t ∈ T. (2)

The total intensity measurements Yt ∈ RN are calculated over the spectrum K as the sum of 57

the spectral intensities. 58

2.1. HS phase retrieval solution (HSPhR) 59

Traditionally, the solution Uo,k is found by measuring the mismatch between the 60

observations and the prediction of the intensities of Ut,k summarized over the spectral 61

interval. We realize it through a neg-log-likelihood of the observed {Zt}, t ∈ T, as 62

l({Zt}, ∑k∈K |Ut,k|2), where Ut,k are the complex-valued object wavefronts at the sensor 63

plane calculated as Ut,k = At,k(Mt,k ◦ Uo,k). Here and in what follows, the curved brackets 64

are used as an indication of a set of variables. We introduce an unconstrained maximum 65

likelihood optimization to reconstruct the object 3D cube {Uo,k}, k ∈ K, from the criterion 66

of the form: 67

min
{Uo,k}

l({Zt}, ∑
k∈K

|At,k(Mt,k ◦ Uo,k)|2) + freg({Uo,k}), (3)

where a second summand is an object prior. We solve it by alternating direction method of
multipliers (ADMM) [15–18]. Next, equation (3) is reformulated as a constrained optimiza-
tion:

min
{Ut,k , Uo,k}

l({Zt}, ∑
k∈K

|Ut,k|2) + freg({Uo,k}), (4)

w.s.t. Ut,k = At,k(Mt,k ◦ Uo,k).

We resolve (4) by the unconstrained formulation with the parameter γ > 0 :

J = l(Zt, ∑
k
|Ut,k|2) +

1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦ Uo,k)||22 + freg({Uo,k}). (5)
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The second summand is the quadratic penalty for the difference between At,k(Mt,k ◦ Uo,k)
and the splitting Ut,k. In optimization of (5), Ut,k → At,k(Mt,k ◦ Uo,k) as γ → 0. The
minimization algorithm iterates min{Ut,k} J with given Uo,k and min{Uo,k} J with given Ut,k:

U(s+1)
t,k = arg min

Ut,k
(l(Zt, ∑

k
|Ut,k|2) + +

1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦ Uo,k)

(s)||22), (6)

U(s+1)
o,k = arg min

Uo,k
( freg({Uo,k}) +

1
γ ∑

t,k
||U(s+1)

t,k − At,k(Mt,k ◦ Uo,k)||22). (7)

For the iterative solution of (6) and (7) we introduce the Lagrangian variables Λt,k [19]:

U(s+1)
t,k = arg min

Ut,k
J({Ut,k, U(s)

o,k , Λ(s)
t,k }),

U(s+1)
o,k = arg min

Uo,k
J({U(s+1)

t,k , Uo,k, Λ(s)
t,k }), (8)

Λ(s+1)
t,k = Λ(s)

t,k − 1
γ
(U(s+1)

t,k − At,k(Mt,k ◦ U(s+1))
o,k ),

where s is the iterative variable. 68

Minimizing (7) on Uo,k we replace the regularization term freg({Uo,k, k ∈ K}) with 69

noise suppression in {Uo,k, k ∈ K}. It is done by Complex Cube Filter (CCF) [20] developed 70

specifically for 3D hyperspectral complex-domain images. Then, the solution for Uo,k is of 71

the form 72

Uo,k =
∑t AH

t,kM
H
t,k(Ut,k − Λt,k)

∑t AH
t,k At,k + reg

, (9)

where the regularization parameter reg > 0 is included if ∑t AH
t,k At,k is singular or ill- 73

conditioned. 74

Minimization on Ut,k (6) depends on the noise type in observations {Zt}. We consider
two types of noise: Poisson and Gaussian. For the Gaussian noise, the loss function is:

J =
1
σ2 ∑

t
||Zt − ∑

k
|Ut,k|2||22 +

1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦ Uo,k)− Λt,k||22. (10)

And for the Poisson noise, considering its multiplicative nature, the loss function is the
following.

J =∑
t

(
χ ∑

k
|Ut,k|2 − Zt log(∑

k
|Ut,k|2χ)

)
+ (11)

+
1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦ Uo,k)− Λt,k||22 + freg({Uo,k}k∈K),

where χ > 0 is a scaling parameter for photon flow, it is proportional to the camera exposure 75

time and defines the noise level of a signal. The signal-to-noise ratio E{Zt}2/var{Zt} = Ytχ 76

takes larger values for larger χ. 77

For minimization min{Ut,k} J, we calculate the derivatives ∂J/∂U∗
t,k and consider the 78

necessary minimum conditions ∂J/∂U∗
t,k = 0. These calculations lead to a set of complex- 79

valued cubic equations with respect to Ut,k for Gaussian observations (10): 80

[ 2
σ2 (∑

k∈K
|Ut,k|2 − Zt) +

1
γ

]
Ut,k =

1
γ
(At,k(Mt,k ◦ Uo,k) + Λt,k). (12)
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With a solution in the form 81

Ût,k =
At,k(Mt,k ◦ Uo,k) + Λt,k

1 + 2γ
σ2 (∑k∈K |Ût,k|2 − Zt)

. (13)

For Poisson observations (11), minimization leads to the set of non-linear equations 82

with respect to Ut,k : 83

[
χ − Zt

∑k∈K |Ut,k|2
+

1
γ

]
Ut,k =

1
γ
(At,k(Mt,k ◦ Uo,k) + Λt,k). (14)

With a solution in the form 84

Ût,k =
At,k(Mt,k ◦ Uo,k) + Λt,k

1 + γχ + γZt
∑k∈K |Ut,k |2

, k ∈ K. (15)

Both Gaussian and Poisson solutions for min{Ut,k} J can be interpreted as the spectral 85

proximity operators (SPO) obtained minimizing the likelihood items regularized by the 86

quadratic penalty: 87

Ût,k = prox f γ(At,k(Mt,k ◦ Uo,k) + Λt,k), (16)

where f stays for the minus-log-likelihood part of J and γ > 0 is a parameter. 88

These operators solve two problems: First, they extract and separate complex-valued 89

spectral components Ut,k from the real-valued observations Zt, in which these components 90

are mixed into the total intensity of the signal. Thus, it provides the spectral analysis of 91

the signals. Second, the noisy observations Zt are filtered with the power controlled by the 92

parameter γ compromising Zt and the power of the predicted signal At,k(Mt,k ◦ Uo,k) at 93

the sensor plane. For a detailed derivation of the solutions, follow the pioneering paper 94

[13]. 95

2.2. Developed algorithm 96

A block scheme of the algorithm is shown in Fig.1. Complex domain initialization 97

(Step 1) is required for the considered spectral domain k ∈ K. In our experiments, we 98

make a 2D random white-noise Gaussian distribution for phase and a uniform 2D positive 99

distribution on (0,1] for amplitude, which are independent for each k. The Lagrange 100

multipliers are initialized by zero values, Λt,k = 0. The forward propagation is realized 101

through the angular spectrum approach and produced for all k ∈ K and t ∈ T (Step 2). The 102

update of the wavefront at the sensor plane (Step 3) is produced by the proximal operators 103

(SPO). For the Gaussian observations, this operator is defined by (13), and for the Poisson 104

observations – by (15). Calculating ∑k∈K |Ût,k|2 requires solving the polynomial equations, 105

cubic or quadratic, for the Gaussian and Poisson cases, respectively. In Step 4, the Lagrange 106

variables are updated. The backward propagation of the wavefront from the sensor plane 107

to the object plane is combined with an update of the spectral object estimate in Step 5. 108

The sparsity-based regularization by Complex Cube Filter (CCF) [20] is relaxed by the 109

weight-parameter 0 < β < 1 at Step 6. The iteration number is fixed to n. 110

3. Numerical experiments 111

Simulation experiments are produced for the complex-valued wavefronts obtained 112

from the propagation of an HS light beam through a thin transparent object. We define the 113

phase delay of the object as: 114

φk =
ϕ · λ1

λk

nλk − 1
nλ1 − 1

, k ∈ [1 : K] (17)

where λk is a wavelength of the wavefront (Λ = 550 − 950 nm) with total number of 115

wavelengths K = 100 , ϕ is a basic phase distribution, and nλk is the refractive index of 116
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the optical material of the object. We took the phase distribution for ϕ as a vortex beam 117

phase in the range of [−π, π] and amplitude as a logo of Tampere University in the range 118

of [0, 1], see Fig.2. Spectral amplitude dependence is modeled in accordance with the 119

spectrum of a supercontinuum white laser ( see Fig.6), providing a non-uniform spectral 120

distribution. This non-uniformity strongly complicates the reconstruction process because 121

of low-intensity spectral components. 122

A dependence of the algorithm accuracy on the wavelength number K and the number 123

of observations T is of special interest.The noise level in the observations is characterized 124

by the signal-to-noise ratio (SNR) in dB. We evaluate the precision of the complex-valued 125

reconstruction by the relative error criterion[21]: 126

ERRORrel = min
φ∈[0,2π)

||x̂ ◦ exp(jφ)− x||22
||x||22

, (18)

where x and x̂ are the true signal and its estimate. If ERRORrel is less than 0.1 the quality 127

of imaging is high. We calculate ERRORrel for K = [6, 20, 60, 100] and T = [18, 60, 180, 300]. 128

The wavelengths for the varying K (spectral channels) are defined as uniformly covering 129

the interval [550, 950] nm. The number of iterations is fixed to n = 200. The relative errors 130

ERRORrel obtained in these experiments are shown in Fig.3(a). It is shown that ERRORrel 131

is low for the high number of masks, T, and for high-quality imaging, the needed number 132

of masks equals the doubled number of wavelengths. Therefore, for the simulation case of 133

K = 100 we took T = 200. 134

1. Input and initialization:
Zt, At,k, U(0)

o,k ,

Λ(0)
t,k = 0, k ∈ K, t ∈ T

2. Forward propagation:
U(s)

t,k = At,k(Mt,k ◦ Uo,k)
(s)

3. Update U(s)
t,k by SPOs:

Û(s)
t,k = prox f γ(U

(s)
t,k + Λ(s)

t,k )

4. Update Lagrange variables:
Λ(s)

t,k = Λ(s)
t,k − (Û(s)

t,k − U(s)
t,k )

5. Backward propagation and
preliminary object estimation:

U(s)
o,k =

∑t AH
t,k(Û

(s)
t,k −Λ(s)

t,k )

∑t AH
t,k At,k+reg

6.Update of U(s)
o,k by complex domain filtering:

U(s)
o,k = (1 − βs)U

(s)
o,k + βsCCF({U(s)

o,k })

Output:
U(n)

o,k , k ∈ K

Figure 1. HSPhR algorithm. The total number of iterations is n.
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Figure 2. Modeled amplitude and basic phase ϕ of the HS object.

In Fig.3(b) we show ERRORrel dependence on SNR and wavelength with K = 6 135

and T = 18. It is seen that for noise levels with SNR bigger than 30 dB ERRORrel is 136

low and indicates high-quality imaging. It is interesting to note that for high noise levels 137

(SNR<30 dB) the shape of ERRORrel corresponds to the inverted spectral distribution of 138

the modeled illumination: the spectral components with higher values ( middle of the 139

spectrum) provide lower ERRORrel than the spectral components with low values. 140

In Fig.4 we show a contour ERRORrel map for the HSPhR algorithm for all spectral 141

components (Y-axis) during iterative calculations (X-axis for iteration number). High- 142

quality imaging regions (ERRORrel < 0.1) are dark blue on the map with signed contours 143

’0.1.’ At a low number of iterations, high-quality imaging appears at only high-intensity 144

spectral components, but with the growing number of iterations, it spreads to low-intensity 145

spectral components.The corresponding reconstruction results after the last iteration (n = 146

200) are presented in Fig.5, where object phase and amplitude are spectrally resolved and 147

correspond to the modeled object from Fig.2. 148

4. Experimental validation 149

For the experimental validation, we used a setup with a phase-only spatial light 150

modulator (SLM) and supercontinuum laser source, see Fig.6. A sum of the object Uo,k and 151

masks Mt,k was imaged on SLM, and projected to the ’Object’ plane by achromatic lenses 152

’L3’ and ’L4’. The light wavefront then propagates freely on distance d = 2.2 mm from the 153

’Object’ plane to ’CMOS,’ where it is registered as a noisy intensity distribution, Zt, with 154

t ∈ [1, T]. According to the simulation results, the mask spatial distribution was modeled 155

as piecewise invariant random with equal probabilities taking one of the following five 156

values [0, 1, 0, 0.25, 0.75] · pi, for the λ = 520 nm. The object was taken as an image of a 157

cameraman with 64 × 64 pixels, phase images of a mask and object are in Fig.7. SLM is 158

the Holoeye phase-only GAEA-2-vis panel, resolution 4160 × 2464, pixel size 3.74 µm. The 159

laser is YSL photonics CS-5 with Λ = 470 ÷ 2400 nm. To work in the spectral range of 160

the sensor, we limit the laser’s spectral bandwidth to the Λ = 470 ÷ 1000 nm range by 161

a) b)

Figure 3. HSPhR reconstruction relative error maps. (a) Mean relative errors depending on the
number of masks, T, and the number of wavelengths, K. A number of iterations n = 200, SNR=54 dB.
(b) Dependence of relative errors on the SNR and wavelength.
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Figure 4. Contour ERRORrel map for HSPhR reconstruction. K = 100, T = 200, SNR=54 dB. Dark
blue regions correspond to high-quality imaging.

a bandpass filter. The camera is a monochrome Blackfly S board with the matrix Sony 162

IMX264, 3.45 µm pixels, and 2448 × 2048 pixels. 163

Reconstruction results are presented in Fig.8, which we made from T = 300 obser- 164

vations and for K = 100 wavelengths. The number of observations is taken T = 300 to 165

overcome noise problems since the estimated [22] SNR of observations equals 34 dB, which 166

is close to the lower limit of HSPhR, estimated in the simulations. Reconstructed amplitude 167

intensities correspond to the spectral distribution of the used laser with a maximum at 168

λ = 750 nm, and phase images correspond to the given cameraman image. Image quality 169

varies from low to high with respect to the intensity distribution of spectral components. 170

Figure 5. Reconstructed amplitudes(a) and phases (b) of the object in simulations. Reconstruction
is performed for K = 100 wavelengths with T = 200 masks and after n = 200 iterations. The
wavelength value is written in each image of the amplitude and corresponds to phase images with
the same location.
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Figure 6. Optical setup. The laser is a supercontinuum light source with wavelengths in the range
of 550 − 1000 nm, L1, L2 are beam-expanding lenses, ’BS’ is a beamsplitter, ‘SLM’ is a Spatial Light
Modulator, L3, L4 are lenses in a 4f-telescopic system, ‘Object’ is the plane of the projected phase
object and masks from SLM, CMOS is a camera.

Figure 7. Images of object(a) and mask(b) imaged on SLM in experiments for λ = 520 nm.

5. Conclusion 171

We propose a new approach for hyperspectral phase retrieval that utilizes modulation 172

phase masks for the reconstruction of a spectrally variable object. The approach is based 173

on a complex domain version of the ADMM method and spectral proximity operators 174

derived for Gaussian and Poisson intensity observations. The proposed technique is able 175

to retrieve complex-domain spectral components of an object from noisy observations and 176

filter out noise by compromising between noisy intensity observations and their predicted 177

Figure 8. Experimentally reconstructed amplitudes(a) and phases (b) of the object. Reconstruction is
performed for K = 100 wavelengths with T = 300 masks. The wavelength number is written in each
image of the amplitude and corresponds to phase images with the same location.
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counterparts. In the algorithm, we do not use traditional phase retrieval constraints, e.g., 178

known aperture. The simulation and physical tests confirmed the effectiveness of the 179

proposed approach. With the mask implementation on a transmissive spatial light modu- 180

lator, the proposed setup allows a simple lensless implementation, which is significantly 181

simpler than HS interferometry and HS holographic imaging. The proposed approach 182

could potentially be useful in various applications, such as biomedical imaging, remote 183

sensing, and materials science. 184
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Abbreviations 190

The following abbreviations are used in this manuscript: 191

192

BS Beam Splitter
CMOS Complementary Metal–Oxide–Semiconductor
CCF Complex Cube Filter
HSI HyperSpectral Imaging
HSPhR HyperSpectral Phase Retrieval
HSDH HyperSpectral Digital Holography
SPO Spectral Proximity Operator
SNR Signal-to-Noise Ratio

193
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