

Proceedings

Light Sheet Fluorescence Microscopy using Incoherent Light **Detection**⁺

Mariana Potcoava ^{1,*} , Christopher Mann ^{2,3} , Jonathan Art ¹ and Simon Alford	Mariana Potcoava ^{1,*}	, Christopher Mann ^{2,3}	³ , Jonathan Art ¹ and Simon Alfo	ord 1
--	---------------------------------	-----------------------------------	---	-------

4

1

2

3

5

6

7

8

9

10

11

12

30 31 32

33

- ¹ Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA; jart@uic.edu (J.A.); sta@uic.edu (S.A.)
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011, USA; Christopher.Mann@nau.edu
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011, USA
- Correspondence: mpotcoav@uic.edu; Tel.: +1-312-355-0328
- + Presented at the "Holography meets Advanced Manufacturing" conference, Estonia, 20-22 February 2023.

Abstract: We previously developed an incoherent holography technique for use in lattice light sheet 13 (LLS) microscopes, that represents a specialized adaptation of light sheet microscopy. Light sheet 14 instruments resolve 3D information by illuminating the sample at 90° to the imaging plane with a 15 sheet of laser light that excites fluorophores in the sample only in a narrow plane. Imaging this plane 16 and then moving it in the imaging z-axis allows construction of the sample volume. Among these 17 types of instruments, LLS microscopy gives higher z-axis resolution and tissue depth penetration. 18 It has a similar working principle to light sheet fluorescence microscopy, but uses a lattice configu-19 ration of Bessel beams, instead of Gaussian beams. Our incoherent light detection technique replaces 20 the glass tube lens of the original LLS with a dual diffractive lens system to retrieve the axial depth 21 of the sample. Here, we show that the system is applicable to all light sheet instruments. To make a 22 direct comparison in the same emission light path, we can imitate the nature of non-Bessel light 23 sheet systems by altering the mask annuli used to create Bessel beams in the LLS system. We change 24 the diffractive mask annuli from a higher NA anulus to a smaller NA anulus. This generates a 25 Gaussian excitation beam similar to conventional light sheet systems. Using this approach, we pro-26 pose an incoherent light detection system for light sheet 3D imaging by choosing a variable NA and 27 moving only the light sheet while keeping the sample stage and detection microscope objective sta-28 tionary. 29

Keywords: Incoherent Holography; Light sheet; Fluorescent Microscopy

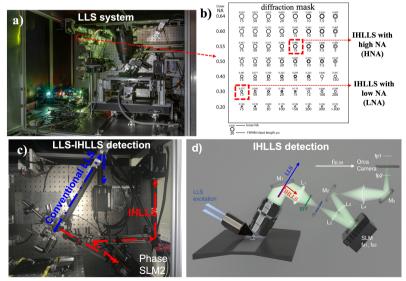
1. Introduction

Continuous irradiation causes photodamage and phototoxicity when imaging living 34 samples and specimens. In order to overcome this problem, light-sheet fluorescence mi-35 croscopy (LSFM) was developed as an imaging technique with good optical-sectioning, 36 to record faster and scan larger sample volumes at low radiation intensities over longer 37 time frames [1]. The LSFM is similar to laser scanning confocal microscopy (LSCM) [2], 38 but the emitted fluorescence light is collected by the detection objective in a perpendicular 39 direction from the excitation light and without the need for a confocal aperture. In LSFM, 40 the excitation light does not pass through the entire sample, instead the sample is illumi-41 nated from the side with a thin light sheet (LS) beam. This clever idea allows the LSFM to 42 collect the emitted light from fluorophores localized in the thin LS plane only and not 43 from fluorophores belonging outside the LS plane. This results in a low light dose usage, 44 and therefore reduces both the photobleaching and phototoxicity [3-5]. LSFM is also re-45 ferred to as selective-plane illumination microscopy (SPIM) when imaging large samples 46

Citation: To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Published: date


Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons (CC BY) license Attribution (https://creativecommons.org/license s/by/4.0/).

[1]. The axial resolution is given by both the thickness of LS (ideally it is extremely thin)
and the detection NA [6,7]. If we choose a microscope objective with an NA of 1.1, we can
obtain a very thin light sheet. However, the light sheet confocal length, over which the
sheet is thin, must be matched to the FOV of the recorded images or the size of the samples. The thinner the sheet (and higher the NA) the shorter the thin region is.

In most of the cases, the light sheet has a Gaussian profile at the specimen due to the 6 Gaussian shape of the laser beams. A thicker Gaussian light sheet can cover larger FOV 7 but have lower resolution and optical sectioning. Non-Gaussian beams using arrays of 8 Bessel beams, called "lattice", have been employed to generate images with excellent scan-9 ning efficiency and resolution, by using very thin light sheets. Lattice light-sheet micros-10 copy (LLSM) system uses the LSFM principle with an optical lattice created with Bessel 11 beams, resulting in a light sheet with thickness of ~400 nm [8]. The typical acquisition rate 12 of a LLSM system is hundreds of frames per second that makes LLSM the ultimate tool 13 for live-cell fluorescence imaging. 14

The lattice light sheet, Figure 1a, is formed by superimposing a linearly polarized 15 sheet of light with a binary phase map of Bessel beams on a binary spatial light modulator 16 (SLM), which is conjugated to the image plane of the excitation objective. Before reaching 17 the sample plane the beam passes a Fraunhofer lens and is further projected onto a trans-18 parent optical annulus, Figure 1b, to eliminate unwanted diffraction orders and lengthen 19 the light sheet. In dithered mode, a 2D lattice pattern is oscillated in the x-axis using a 20 galvanometer (x-galvo), to create a uniform sheet, while another galvanometer mirror 21 moves together with the detection objective, in the z-axis (z-galvo), to scan the sample 22 volume. 23

A more recent approach of the LLSM is the new detection path, Figure 1b, c, that uses 24 the incoherent holography idea, called incoherent holographic lattice light-sheet (IHLLS) 25 [9], to scan the sample volume without moving the detection objective, Figure 1a. It is 26 possible by projecting two diffractive lenses at various z-galvo positions, using a phase 27 SLM, to encode the depth position of the sample being imaged. The annular mask, Figure 28 1b, mentioned above, was centered on an anulus with higher NA (HNA), NAout = 0.5, 29 NAin = 0.485, and sheet length 15 μ m, therefore the beams used for excitation were more 30 Bessel-like beams. The intensity profile of the obtained optical lattice is determined by 31 both the applied binary phase map and the geometry of the transparent annulus. 32

Figure 1. a) The LLS instrument; **b)** The diffraction annular mask filters of inner diameter, NAin, and outer diameter, NAout, to filter out undiffracted light and unwanted higher diffraction orders; **c)** The detection arms for the LLS instrument with the IHLLS detection arm incorporated; **d)** Optical schematics of IHLLS; The LLS and IHLLS with HNA use higher NAout and shorter light sheet (more like Bessel beams), here NAout = 0.55, NAin = 0.48, and sheet length 15 μ m. The LLS and IHLLS with LNA use lower NAout and longer light sheet (more like Gaussian beams), here NAout = 0.3,

33 34 35

36

37

38

NAin = 0.275, and sheet length 75 μ m. The detection magnification *M*det = 62.5 and the illumination 1 wavelength $\lambda_{excitationn}$ = 488 nm. The LLS, or IHLLS 1L with one diffractive lens, fsLM = 400 mm, 2 are used for calibration purposes. The IHLLS 2L with two diffractive lenses, fd1 = 220 mm and fd2 = 3 2356 mm, are used for incoherent imaging. 4

Here, we propose to expand our previous IHLLS detection technique that uses a 6 HNA by choosing a diffractive mask annulus with lower NA (LNA). In this case, the anulus has the following parameters NAout = 0.3 NAin = 0.275, and sheet length 75 μ m. The 8 new detection approach uses a Gaussian-like excitation beam similar to conventional light 9 sheet systems. This provides a tradeoff between the size of the imaged beam and the resolution of the ultimate image in the z-plane. This has advantages for imaging objects at 11 larger intercellular scales. 12

2. Imaging Performances and Diffraction Mask Parameters Selection

In LLS, near non-diffracting Bessel beams are created at the focal position of the excitation objective, 15 by projecting an annular excitation beam, Figure 2a, in the back focal plane of the excitation objec-16 tive. While the z-galvo and z-piezo are moved along the z axis to acquire stacks in LLS / IHLLS 1L, 17 Figure 2b, in IHLLS 2L only the z-galvo is moved at various z positions, Figure 2d. The imaging 18 area / volume is limited to a small FOV, Figure 2c red square, due to the tradeoff between the sheet's 19 propagation length and its thickness. Although IHLLS 1L is the incoherent version of the LLS de-20 tection module, the axial resolution in LLS is better than the axial resolution in IHLLS 1L due to the 21 blurry effect of the diffractive lens that focusses to infinity. The FOV limitation is no more an issue 22 in IHLLS 2L because the combination of the z-galvo motion in the range $-40 \ \mu m \ \div \ +40 \ \mu m$ and 23 the dual diffractive lenses uploaded on the phase SLM allows scanning for the whole FOV of the 24 CMOS detector, which is 208x208 μm^2 . Moreover, the axial resolution is better in IHLLS 2L due to 25 the fact that the focus position is found numerically. 26

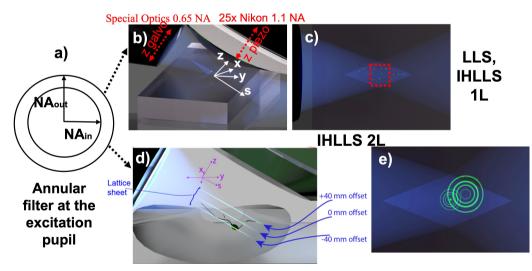


Figure 2. Excitation and scanning geometry in LLS, IHLLS Systems. a) The diffraction mask is 28 conjugated with the BFP of the excitation objective; b) The scanning geometry in LLS and IHLLS 1L, 29 the z-galvo and z-piezo are moved along the z axis to acquire imaging stacks; c) The FOV in a con-30 ventional LLS system or the incoherent version with one diffractive lens, with dithering scanning 31 modality and HNA, is about $52x52 \ \mu m^2$ (red area). d) The scanning geometry in IHLLS 2L, the z-32 galvo is moved at various z positions but the z-piezo is kept fixed; e) The diffractive lens effect in 33 IHLLS 2L system. Excitation objective: Special Optics 0.65 NA, 3.74 mm working water dipping lens; 34 Detection objective: Nikon CFI Apo LWD 25x- Water dipping, 1.1 NA, 3 mm working distance. 35

The NA of the beam is an overall combination of the the inner and outer numerical 36 apertures (NAs) of the annular mask filter, NAout, and NAin. The Bessel-like beams are 37 considered to be created using those annuli on the diffraction mask with NAout \geq 0.5 and 38 the Gaussian-like beams created with the annuli with NAout < 0.4. The thickness of the 39 pattern generated by these beams at the focal position of the excitation objective is given 40

5

13

14

by $w_{sheet} = \lambda_{excitation}/2NA_{out}$, and the sheet length or the FOV by $\frac{\lambda_{escitation}}{n(\cos\theta_{in}-\cos\theta_{out})}$ 1 where $\theta_{in} = arsin(NA_{in}/n)$, $\theta_{out} = arsin(NA_{out}/n)$, and n=1.33 [7]. Although 2 increasing the NA difference produces a thinner light sheet illumination profile, which 3 provides higher axial resolution, the length that the light sheet spans is reduced, and thus 4 it is hard to further compress the light sheet thickness while maintaining a relatively large 5 FOV. The sheet parameters of the two diffraction mask filters at 488 nm are: wsheet-HNA = 6 443.6 nm, $w_{\text{sheet-LNA}} = 813.3 \text{ nm}$, and the FWHM sheet length FWHM_{sheet-HNA} = 15 μ m and 7 FWHM_{sheet-LNA} = 75 μ m. 8

Imaging can be done with various sheet lengths: cultured cells and intracellular 9 events could be imaged using light sheets with lengths smaller than ~20 µm, small 10 organoids with sheets of lengths \sim 30÷40 µm, and large organoids with sheets of lengths \sim 11 50÷70 μm. 12

The beams generated by using the two annuli are shown in Figure 3. The upper row 13 shows the optical lattice generated with the HNA annulus and the bottom row the optical 14 lattice generated by the LNA annulus. Optical lattices can be designed to balance the 15 confinement and the thickness by adjusting the spacing between each pair of beams. As 16 an example, the lattice in Figure 3a is designed as a coherent superposition of 30 Bessel 17 beams with a spacing of 0.99. Similarly, the lattice in Figure 3b is designed by using 26 18 Bessel beams with a spacing of 1.755. A single Bessel beam is shown in Figure 3c and 19 Figure 3d respectively. We can see that the lower NA beam has a Gaussian-like shape. The 20 beams at the sample plane, corresponding to the patterns in Figure 3a (b), are shown in 21 Figure 3e and Figure 3f, and the same beams but with the dithered mode are shown in 22 Figure 3g and Figure 3h. 23

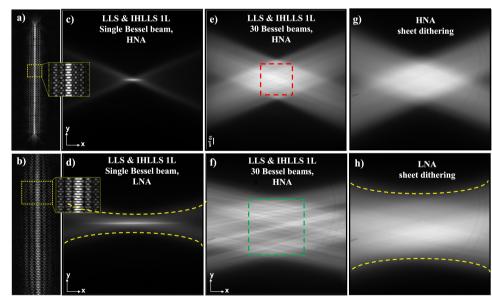


Figure 3. Optical lattices generation using HNA and LNA annuli; a) HNA, 30 Bessel beams optical 25 lattice with 0.99 spacing, the width of the light sheet in the center of the FOV is about 400 nm; b) 26 LNA, 26 Bessel beams optical lattice with 1.755 spacing, he width of the light sheet in the center of the FOV is about 800 nm.; c), d) Single Bessel beam at the sample plane; e, f) The Bessel beams corresponding to the optical lattices from **a**),**b**) at the sample plane. The scanning area in a conventional LLS (HNA) is at best 52×52 μ m² (red square in e), and in a conventional LLS (LNA) about 78×78 µm² (green square in f); g, h) The Bessel beams corresponding to the optical lattices from a), b) with the dithered mode at the sample plane.

3. Results

To examine the effects of applying IHLLS holography with LNA, we performed three experiments for this study.

- 24
- 27 28 29
- 30 31 32

33

34

The first was done using the conventional LLS pathway where the z-galvo was stepped 3 in $\delta z = 0.101 \, \mu m$ increments through the focal plane of a 25x Nikon objective, for a 4 displacement of $\Delta z = 40 \,\mu m$, Figure 4a. The detection objective was simultaneously 5 moved the same distance with a z-piezo controller. The second set of images was obtained 6 using the IHLLS 1L with focal length f_SLM= 400 mm displayed on the SLM, where both 7 the z-galvo and z-piezo were again stepped with the same $\delta z = 0.101 \, \mu m$ increments 8 through the focal plane of the objective for the same displacement $\Delta z = 40 \ \mu m$, Figure 4b. 9 The scanning area in a conventional LLS with HNA is at best $52 \times 52 \ \mu m^2$ or $78 \times 78 \ \mu m^2$ in 10 a conventional LLS with LNA. Therefore, to enlarge the scanned region these ROI areas 11 can be moved in a mosaic-fashion by moving the sample. 12

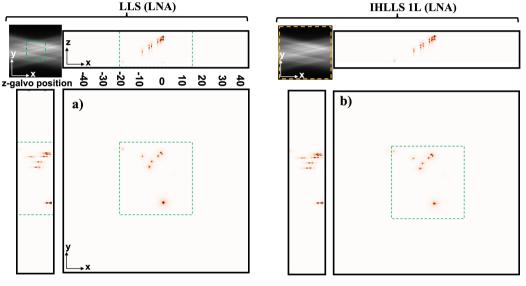
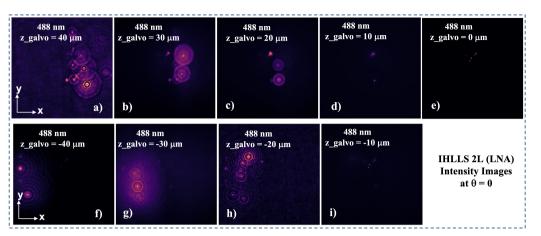
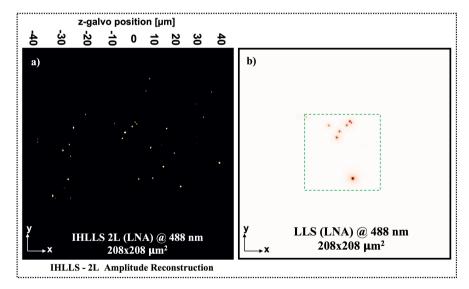


Figure 4. Tomographic imaging of 0.5 µm polystyrene beads, FOV 208 µm², in a conventional LLS 14 (a) and IHLLS 1L of focal length 400 nm (b), without deconvolution. On the sides and above are 15 shown the max projections through the volume (400 z-galvo steps). The Bessel beams are displayed 16 in the upper left corner of each xy-projection to show the orientation of the beams (FOV 208 µm²). 17 The area enclosed inside the colored dashed rectangles are as follows: red- the scanning area for the 18 original LLS (52 µm²) and yellow – the actual scanning area for the LLS, IHLLS 1L, and IHLLS 2L. 19 The bead in the black dashed rectangle that is in the middle of the lattice sheet is considered for 20 calculating the resolution for the two instruments. 21


3.2. IHLLS 2L imaging

Our incoherent system enables full complex-amplitude modulation of the emitted light 23 for extended FOV and depth. The second set of images was obtained using the IHLLS 24 pathway with two super-imposed diffractive lenses displayed on the SLM comprising 25 randomly selected pixels (IHLLS 2L), where only the z-galvo was moved within the same 26 $\Delta z = 40 \,\mu m$ displacement range, above and below the reference focus position of the 27 objective (which corresponds to the middle of the camera FOV), at $z_{galvo=\pm40} \mu m \pm 30$ 28 μ m, ±20 μ m, ±10 μ m, and 0 μ m, Figure 5. The two wavefronts interfere with each other at 29 the camera plane, to create Fresnel holograms. Four interference patterns were created 30 using a phase shifting technique ($\theta=0, \theta=\pi/2, \theta=\pi/2$) and further combined 31 mathematically to obtain the complex amplitude of the object point at the camera plane. 32

1


2

13

Figure 5. IHLLS 2L 500 nm beads holography, intensity images at phase shift, $\theta = 0$; z-galvo position: **a)** 40 µm, **b)** 30 µm, **c)** 20 µm, **d)** 10 µm, **a)** 0 µm, **a)** -40 µm, **b)** -30 µm, **c)** -20 µm, **d)** -10 µm.

The max projection of all z-planes where the beads were found are displayed in Figure 6a. They 4 show the complex holograms propagated to the best focal plane. We observe that IHLLS 2L per-5 forms better in comparison to the conventional LLS system in dithering mode regarding the scan-6 ning/detection area. The scanned area with detected beads in an IHLLS 2L system with LNA is the 7 full FOV of the CMOS detector while the scanned area with detected beads in a LLS system with 8 LNA is about $78 \times 78 \ \mu\text{m}^2$. In terms of axial resolution, we already showed [9] that the axial resolu-9 tion of IHLLS 2L is higher than that of LLS because the objects are localized with greater precision 10 using diffraction software packages. 11

Figure 6. Volume imaging comparison between the IHLLS 2L and LLS with LNA; a) IHLLS 2L beads volume reconstruction; b) LLS beads volume imaging. The green rectangle in the middle of the image represents the scanning area of the conventional LLS system in the dithering mode.

4. Conclusion

The approach of using lower NA (LNA) masks to generate lattice light-sheets, forms 17 beams that approximate Gaussian rather than Bessel beams. This provides a tradeoff 18 between the size of the imaged beam and the resolution of the ultimate image in the zplane. This has advantages for imaging objects at larger intercellular scales. Here we 20 demonstrate, that even with these longer, but lower resolution beams, the IHLLS 21 approach to generate holograms to resolve 3D positional information is functional. In 22 fields of study, such as neuroscience, where cell structure is complex but at large scales, 23

1

2

3

12

13

14

15

1.

2. 3.

4.

5.

6.

7.

8.

9.

this will enable resolution of complex 3D structures capturing structures as large as 200 μ m lengths.	1 2	
Author Contributions: Conceptualization, M.P. and S.A.; methodology, M.P. and S.A.; software, M.P. and C.M.; validation, M.P., S.A., J.A., and C.M.; resources, S.A., J.A., and C.M.; data curation, M.P., S.A., and C.M.; writing—original draft preparation, M.P. and S.A.; writing—review and editing, M.P., S.A., J.A., and C.M.; visualization, M.P., S.A., J.A., and C.M.; supervision, S.A. and J.A.; project administration, S.A. and J.A.; funding acquisition, S.A. and J.A. All authors have read and agreed to the published version of the manuscript.	3 4 5 6 7 8 9	
Funding: This research was funded by the NIH RO1 NS111749 to S.A. and the NIH R21 DC017292 to J.A.	10 11	
Institutional Review Board Statement: All work on animals was performed according to Institu- tionalization guidelines in an AALAC approved facility at UIC. The work was approved by the institutional IACUC review committee under protocol number ACC 20-119 on January 2022.	12 13 14	
Data Availability Statement: Supporting data for Figures 4, 5, and 6 are available from the corresponding author on reasonable request. This is due to the size of the datasets being so large that they are not available on a public server.	15 16 17	
Acknowledgments: We would like to thank Dr Lisa Hoffman for her support in the laboratory.	18	
Conflicts of Interest: The authors declare no conflict of interest.	19	
References	20	
Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E.H.K. Optical Sectioning Deep Inside Live Embryos by Selective Plane	21	
Illumination Microscopy. Science 2004, 305, 1007-1009, doi:doi:10.1126/science.1100035.		
Davidovits, P.; Egger, M.D. Scanning Laser Microscope. Nature 1969 , 223, 831-831, doi:10.1038/223831a0.		
Pampaloni, F.; Ansari, N.; Girard, P.; Stelzer, E.H.K. Light sheet-based fluorescence microscopy (LSFM) reduces phototoxic effects		
and provides new means for the modern life sciences. In Proceedings of the Advanced Microscopy Techniques II, Munich,		
2011/05/22, 2011; p. 80860Y.	26	
Laissue, P.P.; Alghamdi, R.A.; Tomancak, P.; Reynaud, E.G.; Shroff, H. Assessing phototoxicity in live fluorescence imaging.		
Nature Methods 2017, 14, 657-661, doi:10.1038/nmeth.4344.		
Stelzer, E.H.K.; Strobl, F.; Chang, BJ.; Preusser, F.; Preibisch, S.; McDole, K.; Fiolka, R. Light sheet fluorescence microscopy.		
Nature Reviews Methods Primers 2021, 1, 73, doi:10.1038/s43586-021-00069-4.		
Gao, L.; Shao, L.; Chen, BC.; Betzig, E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination	31	
microscopy. Nature Protocols 2014, 9, 1083-1101, doi:10.1038/nprot.2014.087.		
Gao, L. Optimization of the excitation light sheet in selective plane illumination microscopy. Biomed. Opt. Express 2015, 6, 881-		
890, doi:10.1364/BOE.6.000881.	34	
Chen, BC.; Legant, W.R.; Wang, K.; Shao, L.; Milkie, D.E.; Davidson, M.W.; Janetopoulos, C.; Wu, X.S.; Hammer, J.A.; Liu,		
Z.; et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 2014 , 346, 1257998,		
doi:doi:10.1126/science.1257998.	37	
Potcoava, M.; Mann, C.; Art, J.; Alford, S. Spatio-temporal performance in an incoherent holography lattice light-sheet microscope		
(IHLLS). Opt Express 2021, 29, 23888-23901, doi:10.1364/oe.425069.	39	