

Proceedings 2023, 70, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/proceedings

Proceedings 1

Verification of SoC using Advanced Verification Methodology† 2

Pranuti Pamula1, Durga Prasad Gorthy2, Phalguni Singh Ngangbam and Aravindhan Alagarsamy2,* 3

1 Multi-Core Architecture Computation (MAC) Lab, Department of ECE, Koneru Lak-4

shmaiah Education Foundation, Vaddeswaram, AP, 522501, India; shellypra-5

nuti@gmail.com 6

2 AMD, Hyderabad,500081; prasad.gorthy@gmail.com 7

* Correspondence: aravindhan.alagar@gmail.com 8

† Presented at the Holography Meets Advanced Manufacturing, India, and 15-02-2022. 9

Abstract: The Semiconductor industry has evolved significantly since its founding in 10

1950. Primarily used electronic devices such as transistors and diodes but advancements 11

in technology have led to more complex semiconductor devices, from printed circuit 12

boards to multi-million gate design i.e., a System on Chip. Almost 70-80 percent of the 13

total SoC design effort is spent on functional verification. In this paper, verification of 14

interconnect block in a processing system is presented. Trace monitoring of the transac-15

tions on the AXI interface of the interconnect is done by programming different opera-16

tional pointers and filters. Simulated results from the Synopsys - VCS tool. 17

Keywords: Semiconductor industry; SoC; functional verification; AXI interface 18

 19

1. Introduction 20

In recent years, the complexity of an SoC has increased. The more numbers of com-21

ponents in a single chip makes the verification of any SoC design very critical. Hence 22

a proper methodology for any SoC or IP is required [1-4]. Despite all the ad-23

vancements, there is a significant gap between the modern technology and verifica-24

tion needs for new industries. This situation is getting worse by rapidly changing 25

design as there is rapid movement towards the era of automated vehicles, smart cities 26

and (IoT) Internet of Things [5-8]. Moreover, these electronics devices collect per-27

sonal information such as location, sleep patterns, health etc., which are stored in the 28

billions of computer devices that operates without pause and even the environment 29

may have compromised or malicious devices. As the system design and security 30

have transformed to adapt themselves so the verification must adjust as well. As per 31

the growing requirements for the design and the time to market, duration has shrunk 32

from years of verification and hard work to less than a year. This aggressive shrink-33

ing implies less duration for a thorough design review which may cause misunder-34

standing in the requirements and a consequent increase in errors. So, the verification is 35

expected to handle more errors in design with even less time duration. 36

1.1 Problem Statement 37

Verification of an SoC is carried out on different stages with a different approach as per 38

the design specifications. The interconnect being a common ground for all the rest of the 39

design to interact, there are many functionalities to be verified and connectivity checks to 40

be done. Many tests need to be developed for the verification of an interconnect. Con-41

nectivity checks at the interface interconnect being the most important require detailed 42

Citation: To be added by editorial

staff during production.

Academic Editor: Firstname Lastname

Published: date

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Proceedings 2023, 70, x FOR PEER REVIEW 2 of 8

analysis and thorough research of the design spec. The track sourcing from a master 1

should reach the desired slave interface without any loss in the data packets. Such checks 2

between multiple masters and slave are carried out by initiating write operations to a 3

register space of the slave and expecting to read the same data without any errors. These 4

transactions can be self-tested by the use of System Verilog assertions and checkers. The 5

other functionalities of the design can be verified with a variety of approaches. 6

2. Materials and Methods 7

Deep sub-micron effects complicate design closure for very large designs [9]. A system 8

on chip (SoC) is an IC (Integrated Circuit) which is designed by integrating multiple 9

standalone VLSI designs which provide complete functionality for an application. SoC 10

integrates a microprocessor with advanced peripherals such as a coprocessor, memory 11

elements, GPU, Wi-Fi module, etc. This definition of SoC emphasizes the predesigned 12

models of complex design functions which are known as cores. These can be intellectual 13

property blocks, virtual components, macros, etc. In SoC, in-house library cores may be 14

used along with some cores designed by other design houses known as intellectual 15

property. Because of the use of embedded software and increasing integration of cores, 16

the design complexity of SoC has increased dramatically over the past few years. And it's 17

still expected to grow at a very fast rate. According to Moore's law, silicon complexity 18

quadruples every three years [10]. This complexity accounts for the huge size of cores 19

and shrinking geometry. 20

There are three types of SoCs that are totally distinguishable i.e., an SoC built around 21

a micro-controller, an SoC built around a microprocessor, and a programmable SoC, 22

where the internal elements are not predefined and can be programmed in any 23

manner essential. These kinds of SoCs are also known as FPGAs or a complex pro-24

grammable logic devices. In all Soc designs, predefined cores are the essential com-25

ponents. The flexibility of the cores depends on the form in which they are available. 26

The trade-off between these cores is in terms of performance, power, speed, area, 27

flexibility, cost, time-to-market, etc. [11]. 28

2.1 Architectural Overview 29

The SoC architecture integrates a feature of a dual or single-core microprocessor 30

core-based processing system and Xilinx programmable logic in a single device. It is built 31

on state-of-art technology that offers high performance and low power [12]. The mul-32

ti-core processors are the heart of the PS which also includes on-chip memory, external 33

memory interfaces, and a rich set of I/O peripherals. 34

SoC offers the flexibility and scalability of an FPG while providing performance, power, 35

and ease of use. The range of devices in the family of SoC enables the designers to find 36

cost sensitive as well as high-performance applications from a single platform using 37

standard tools. 38

Functional blocks of SoC are shown in Figure 1. The Processing system and Program-39

mable Logic both operate on different power domains. This configuration enables the 40

users to manage the power utilization of PL if required. 41

The SoC is composed of two major functional blocks: 42

 Processing System 43

 Programmable Logic 44

Proceedings 2023, 70, x FOR PEER REVIEW 3 of 8

 1

Figure 1. SoC Architecture 2

2.1.1 Processing System (PS) 3

 Application Processor Unit: The application processor unit offers high performance 4

and standard-compliant capabilities. The runtime configurations allow the single pro-5

cessor or asymmetrical or symmetrical multiprocessing setups. It is a 32 Kb instruction 6

set with a 32 Kb cache [12]. Also, a sharable 512Kb cache with parity is available. An 7

accelerator coherency port from PL to PS, which is a 64b AXI slave port provides a 8

connection between the processing system and programmable logic. APU also contains 9

a 256Kb of on-chip SRAM which is a dual-ported memory. It is accessible to CPUs, PL, 10

and central interconnects. There are four DMA (Direct memory access) channels for PS, 11

to copy data from CPU memory to/from other system memories. 12

 Memory interfaces: The memory interface of PS includes multiple memory technolo-13

gies. It consists of DDR controllers with 16b and 32b widths. This uses up to 73 dedi-14

cated pins of PS [12]. The DDR can be powered down as per the idle periods of PS. 15

Transaction scheduling is done for optimizing data bandwidth and latency. The effi-16

ciency of memory is increased by 90% by advanced re-ordering engines and 80% effi-17

ciency with random read/write operations. A collision check monitors the memory for 18

any write-read collisions and the write buffer is used in that case. The primary boot 19

device can be a NAND controller or parallel SRAM/NOR controller. 20

 I/O peripherals: The input-output peripherals are a collection of industry-standard in-21

terfaces for communication with external systems. The programmable interrupts on the 22

GPIO are used for a status read of raw and masked interrupts. These interrupts are 23

positive edge, negative edge, either edge, high level, or low-level sensitive. A USB 2.0 24

high-speed on-the-go (OTG) dual-role USB host controllers and USB device controller 25

operations are performed using a single hardware. This configuration uses MIO pins 26

Proceedings 2023, 70, x FOR PEER REVIEW 4 of 8

only. The USB host controller registers and data structures are EHCI compatible [12]. It 1

supports up to 12 endpoints 2

 Interconnect: The SoC uses several interconnect technologies that are optimized for 3

specific communication requirements of the functional blocks. The SoC interconnect is 4

divided into two parts: one is based on the high-performance data path of AXI on the 5

PS interconnect and the other is on PS-PL interfaces. The PS interconnect consists of an 6

OCM interconnect and a central interconnect. The OCM interconnect provides access to 7

256Kb memory from the central interconnect and PL. The CPU and ACP interfaces 8

have the lowest latencies to OCM through the SCU. The central interconnect is a 64-bit 9

interconnect. It connects the input-output peripherals and DMA controller to the DDR 10

memory controller, on-chip RAM, and the AXI-GP interfaces for PL logic. It also con-11

nects the local DMA units in Ethernet, USB, and SD/SDIO controllers to the central in-12

terconnect. It also connects the PS master to the IOP. 13

2.2 Connectivity check in Interconnect 14

Interconnect consists of several input and output interfaces. Each of the interfaces reaches 15

out to different slave modules or input from connected masters. The connectivity checks 16

are essential at every interface. This is done to verify the transactions that are intended to 17

pass through a particular interface are reaching without any loss of data packets. Such 18

checks are carried out by initiating write operations from a master to register the space of 19

the slave and expect to read the same data without any errors. This behavior of the design 20

is verified by using system Verilog Assertions and data comparison using system C or 21

System Verilog [13]. The analysis of the simulated result is as important as defining the 22

sequence of the test. The occurrence of an error or unexpected behavior at the output is 23

required to be traced back to the source of the issue. A large amount of time is spent on 24

debugging of simulated results. One of the test scenarios generated to verify connectivity 25

at an interface is as discussed. The simulation result for verification of an AXI interface 26

and APB interface are shown in the waveforms. 27

3. Results 28

Many transactions are carried out throughout a design, and with such a complexity level 29

of an SoC, it is required to have better debug features. Trace is the most important debug 30

feature. It is a system that records the execution of the processor and other blocks in real 31

time. This is used for debugging a system that connects and communicates with the ex-32

ternal world. Trace all capturing Ture the corner cases that a normal verification of SoC 33

cannot figure out. The trace is used in various ways such as performance optimization of 34

the system, increasing the efficiency of the system and software, and accountability as 35

hard evidence for the cause of system failure. The level of trace monitoring can be flexible 36

and depend on the complexity of the design. In the case of multicore SoC design, the cost 37

of implementation can be reduced. Trace monitoring can be done by using a software or 38

hardware trace. In software trace, data is written to an area of system memory, while a 39

separate task sends this data back to debug block via an available communication chan-40

nel i.e., JTAG. In hardware trace, a logic watches the address, data, and control signals 41

within the SoC and compresses this information, and sends it to a trace buffer. The buffer 42

subdivides the information into instruction trace, data trace, and bus trace. These signals 43

are then sent to respective debug blocks for further evaluation. 44

The verification of this block is of utmost importance. This is done by programming a 45

testbench to monitor outgoing traffic with the help of pointers. This outgoing traffic can 46

contain a large bandwidth of data signals. This outgoing data can be filtered as per the 47

requirement and a trace can be generated for only those selected data signals or transac-48

Proceedings 2023, 70, x FOR PEER REVIEW 5 of 8

tions. The pointers required to monitor the interface are programmed using set of control 1

registers. These configurations are shown in Figure 2. 2

 3

Figure 2: Configuration of Pointers 4

When pointers are configured and set to monitor a port, the filters are activated to filter 5

out the required amount of data. The filters are configured as per the address or id of the 6

transactions and later subdivided by control/instruction trace, data trace, bus trace, in-7

terface trace, fabric trace, etc. Then a burst of AXI transactions is sent to the observed 8

port. A set of such transactions is displayed in the following images. 9

 10

Figure 3: Write operation of AXI Burst Transfer 11

 12

Figure 4: Read operation of AXI Burst Transfer 13

 14

Figure 5: Read Response on AXI Burst Transfer 15

The write and read burst transfers sent to the AXI bus are shown in Figure 6. The above 16

image shows traffic sent to the observed port. These transactions are then observed with 17

the help of pointers. The transactions on the interface are filtered and sent out to the 18

counter, to count the number of transaction hits. The output is thus observed and ana-19

lyzed for verification. 20

Proceedings 2023, 70, x FOR PEER REVIEW 6 of 8

Below are the waveforms depicting the counter values at the output. The output of write 1

request pointer is shown in Figure 7. 2

 3

Figure 6: Burst Traffic on AXI Interface 4

 5

Figure 7: Write Request Transfers 6

The output of write response pointer is shown in Figure 8. 7

 8

Figure 8: Write Response Transfers 9

The output of read request pointer is shown in Figure 9. 10

Proceedings 2023, 70, x FOR PEER REVIEW 7 of 8

 1

Figure 9: Read Request Transfers 2

The output of read response pointer is shown in Figure 10. 3

 4

Figure 10: Read Response Transfers 5

4. CONCLUSIONS. 6

SoC Verification is a complex and never-ending task. The process can be faster and more 7

efficient when proper programming and simulation tools are used. Verification is done 8

with prior knowledge of SoC architecture and RTL design where the environment is built 9

using UVM and System Verilog. All the parts of the testbench are reusable and can be re-10

used easily for different designs. This reduces verification complexity and improves effi-11

ciency. The design functionalities are verified by using assertions and checkers along with 12

the basic test sequence. 13

The connectivity of interconnect block with several interfaces is verified successfully. The 14

performance monitoring at various interfaces of interconnect is successfully completed. 15

The simulation results are compared and evaluated by self-checking testbench. This re-16

duces extra efforts to locate the problem or issue in the design. As it locates the exact 17

timestamp and points at the exact line of the RTL code, where a violation has occurred. 18

5. REFERENCES 19

[1] P. Ghosh and R. Srivastava, “Case Study: SoC Performance Verification and Static 20

Verification of RTL Parameters,” IEEE Proc 20th International Workshop on Micropro-21

cessor/SoC Test, Security and Verification (MTV), pp. 65–72, 2019. 22

Proceedings 2023, 70, x FOR PEER REVIEW 8 of 8

 [2] X. Huang, L. Liu, Y. Li, L. Liu and X. Huang, “FPGA Verification Methodology for 1

SiSoC Based SoC Design,” IEEE International Conference of Electron Devices and Sol-2

id-State Circuits, 2011. 3

 [3] L. Bai, X. Fan, M. Zhang and L. Sun, “A VMM/FPGA Co-verification Method for 4

“Longtium Stream” Processor,” IEEE International Conference on Signal Processing, 5

Communication and Computing, 2013. 6

 [4] J. Podivinsky, M. Simkova, O. Cekan and Z. Kotasek, “FPGA Prototyping and Ac-7

celerated Verification of ASIPs,” 18th IEEE International Symposium on Design and Di-8

agnostics of Electronic Circuits & Systems, pp. 145-148, 2015. 9

[5] A. Noami, A. Alahdal, B. P. Kumar, P. Chandrasekhar, N. Safi, “High Speed Data 10

Transactions For Memory Controller Based on AXI4 Interface Protocol SoC”, 1st IEEE 11

International Conference on Authorized licensed use limited to: XILINX. Downloaded on 12

February 10,2023 at 13:14:46 UTC from IEEE Xplore. Restrictions apply. Advances in 13

Electrical, Computing, Communications and Sustainable Technologies, 2021. 14

 [6] S. Seongyoung, J. Moon and S. Jun, “FPGA-Accelerated Time Series Mining on 15

Low-Power IoT Devices” Processor,” 31st IEEEt International Conference on Applica-16

tion-specific Systems, Architectures and Processors, 2020. 17

 [7] A. Noami, A. A. Alammari, N. Safi, B. P. Kumar, C. C. Paidimarry, “Power Optimi-18

zation For Multi-Core Memory Controller Using Intelligent Clock Gating Technique”, 19

Unpublished 20

 [8] K. C. Gophane and P. C. Bhaskar, “FPGA Based Adaptive IoT Framework for Dis-21

tinct Applications,” in IEEE Fourth International Conference on Computing Communi-22

cation Control and Automation, 2018. 23

[9] Najm, Farid, and Jay Abraham. "Accounting for very deep sub-micron effects in sili-24

con models." EEdesign Magazine (2001). 25

[10] Tuomi, Ilkka. "The lives and death of Moore's Law." First Monday (2002). 26

[11] Noguera, Juanjo, and Rosa M. Badia. "System-level power-performance trade-offs in 27

task scheduling for dynamically reconfigurable architectures." Proceedings of the 2003 28

international conference on Compilers, architecture, and synthesis for embedded systems. 29

2003 30

[12] Xilinx (2017), ‘Zynq-7000 all programmable soc data. 31

[13] Spear, Chris. System Verilog for verification: a guide to learning the testbench lan-32

guage features. Springer Science & Business Media, 2008. 33

 34

	1. Introduction
	In recent years, the complexity of an SoC has increased. The more numbers of components in a single chip makes the verification of any SoC design very critical. Hence a proper methodology for any SoC or IP is required [1-4]. Despite all the advancemen...
	1.1 Problem Statement
	Verification of an SoC is carried out on different stages with a different approach as per the design specifications. The interconnect being a common ground for all the rest of the design to interact, there are many functionalities to be verified and ...
	2. Materials and Methods
	Deep sub-micron effects complicate design closure for very large designs [9]. A system on chip (SoC) is an IC (Integrated Circuit) which is designed by integrating multiple standalone VLSI designs which provide complete functionality for an applicatio...
	There are three types of SoCs that are totally distinguishable i.e., an SoC built around a micro-controller, an SoC built around a microprocessor, and a programmable SoC, where the internal elements are not predefined and can be programmed in any mann...
	2.1 Architectural Overview
	The SoC architecture integrates a feature of a dual or single-core microprocessor core-based processing system and Xilinx programmable logic in a single device. It is built on state-of-art technology that offers high performance and low power [12]. Th...
	SoC offers the flexibility and scalability of an FPG while providing performance, power, and ease of use. The range of devices in the family of SoC enables the designers to find cost sensitive as well as high-performance applications from a single pla...
	Functional blocks of SoC are shown in Figure 1. The Processing system and Programmable Logic both operate on different power domains. This configuration enables the users to manage the power utilization of PL if required.
	The SoC is composed of two major functional blocks:
	 Processing System
	 Programmable Logic
	Figure 1. SoC Architecture
	2.1.1 Processing System (PS)
	 Application Processor Unit: The application processor unit offers high performance and standard-compliant capabilities. The runtime configurations allow the single processor or asymmetrical or symmetrical multiprocessing setups. It is a 32 Kb instru...
	 Memory interfaces: The memory interface of PS includes multiple memory technologies. It consists of DDR controllers with 16b and 32b widths. This uses up to 73 dedicated pins of PS [12]. The DDR can be powered down as per the idle periods of PS. Tr...
	 I/O peripherals: The input-output peripherals are a collection of industry-standard interfaces for communication with external systems. The programmable interrupts on the GPIO are used for a status read of raw and masked interrupts. These interrupts...
	 Interconnect: The SoC uses several interconnect technologies that are optimized for specific communication requirements of the functional blocks. The SoC interconnect is divided into two parts: one is based on the high-performance data path of AXI o...
	2.2 Connectivity check in Interconnect
	Interconnect consists of several input and output interfaces. Each of the interfaces reaches out to different slave modules or input from connected masters. The connectivity checks are essential at every interface. This is done to verify the transacti...
	3. Results
	Many transactions are carried out throughout a design, and with such a complexity level of an SoC, it is required to have better debug features. Trace is the most important debug feature. It is a system that records the execution of the processor and ...
	The verification of this block is of utmost importance. This is done by programming a testbench to monitor outgoing traffic with the help of pointers. This outgoing traffic can contain a large bandwidth of data signals. This outgoing data can be filte...
	Figure 2: Configuration of Pointers
	When pointers are configured and set to monitor a port, the filters are activated to filter out the required amount of data. The filters are configured as per the address or id of the transactions and later subdivided by control/instruction trace, dat...
	Figure 3: Write operation of AXI Burst Transfer
	Figure 4: Read operation of AXI Burst Transfer
	Figure 5: Read Response on AXI Burst Transfer
	The write and read burst transfers sent to the AXI bus are shown in Figure 6. The above image shows traffic sent to the observed port. These transactions are then observed with the help of pointers. The transactions on the interface are filtered and s...
	Below are the waveforms depicting the counter values at the output. The output of write request pointer is shown in Figure 7.
	Figure 6: Burst Traffic on AXI Interface
	Figure 7: Write Request Transfers
	The output of write response pointer is shown in Figure 8.
	Figure 8: Write Response Transfers
	The output of read request pointer is shown in Figure 9.
	Figure 9: Read Request Transfers
	The output of read response pointer is shown in Figure 10.
	Figure 10: Read Response Transfers
	4. CONCLUSIONS.
	SoC Verification is a complex and never-ending task. The process can be faster and more efficient when proper programming and simulation tools are used. Verification is done with prior knowledge of SoC architecture and RTL design where the environment...
	The connectivity of interconnect block with several interfaces is verified successfully. The performance monitoring at various interfaces of interconnect is successfully completed. The simulation results are compared and evaluated by self-checking tes...
	5. REFERENCES
	[1] P. Ghosh and R. Srivastava, “Case Study: SoC Performance Verification and Static Verification of RTL Parameters,” IEEE Proc 20th International Workshop on Microprocessor/SoC Test, Security and Verification (MTV), pp. 65–72, 2019.
	[2] X. Huang, L. Liu, Y. Li, L. Liu and X. Huang, “FPGA Verification Methodology for SiSoC Based SoC Design,” IEEE International Conference of Electron Devices and Solid-State Circuits, 2011.
	[3] L. Bai, X. Fan, M. Zhang and L. Sun, “A VMM/FPGA Co-verification Method for “Longtium Stream” Processor,” IEEE International Conference on Signal Processing, Communication and Computing, 2013.
	[4] J. Podivinsky, M. Simkova, O. Cekan and Z. Kotasek, “FPGA Prototyping and Accelerated Verification of ASIPs,” 18th IEEE International Symposium on Design and Diagnostics of Electronic Circuits & Systems, pp. 145-148, 2015.
	[5] A. Noami, A. Alahdal, B. P. Kumar, P. Chandrasekhar, N. Safi, “High Speed Data Transactions For Memory Controller Based on AXI4 Interface Protocol SoC”, 1st IEEE International Conference on Authorized licensed use limited to: XILINX. Downloaded on...
	[6] S. Seongyoung, J. Moon and S. Jun, “FPGA-Accelerated Time Series Mining on Low-Power IoT Devices” Processor,” 31st IEEEt International Conference on Application-specific Systems, Architectures and Processors, 2020.
	[7] A. Noami, A. A. Alammari, N. Safi, B. P. Kumar, C. C. Paidimarry, “Power Optimization For Multi-Core Memory Controller Using Intelligent Clock Gating Technique”, Unpublished
	[8] K. C. Gophane and P. C. Bhaskar, “FPGA Based Adaptive IoT Framework for Distinct Applications,” in IEEE Fourth International Conference on Computing Communication Control and Automation, 2018.
	[9] Najm, Farid, and Jay Abraham. "Accounting for very deep sub-micron effects in silicon models." EEdesign Magazine (2001).
	[10] Tuomi, Ilkka. "The lives and death of Moore's Law." First Monday (2002).
	[11] Noguera, Juanjo, and Rosa M. Badia. "System-level power-performance trade-offs in task scheduling for dynamically reconfigurable architectures." Proceedings of the 2003 international conference on Compilers, architecture, and synthesis for embedd...
	[12] Xilinx (2017), ‘Zynq-7000 all programmable soc data.
	[13] Spear, Chris. System Verilog for verification: a guide to learning the testbench language features. Springer Science & Business Media, 2008.

