Verification of SoC using Advanced Verification Methodology

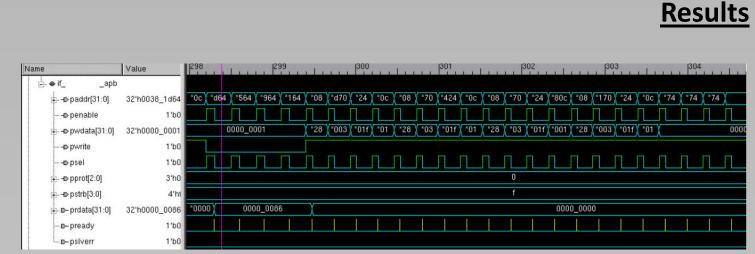
Pranuti Pamula, Durga Prasad Gorthy, Phalguni Singh Ngangbam and Aravindhan Alagarsamy*

Multi-Core Architecture Computation (MAC) Lab, Department of ECE, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, 522501 AMD, Hyderabad, 500081

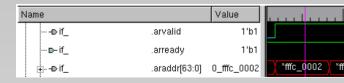
INTRODUCTION

- \checkmark In the past few decades, there has been tremendous progress in semiconductor industry from printed circuit boards to a multi-million gate design i.e., a System on Chip.
- ✓ SoC provides faster and reliable implementation design with low cost per gate and considerably low power consumption.
- \checkmark In addition to this, it also offers a smaller physical size and with greater design security.
- \checkmark The functional verification of the design is done by using system verilog and UVM testbench which includes creation of testcases, assertions and checkers for verifying different functionality as per the design specifications.
- \checkmark A unique functional block which is present on the interconnect to slave interface is verified by using combination of checkers and test sequences.
- Trace monitoring of the transactions on AXI interface of the interconnect is done by programming different operational pointers and filters.

Challenges in verification


With devices getting smarter day by day, the complexity of operation shave gone up. Interaction points with users have increased. Some IoT based smart devices now continuously collect and process information.

- Reduction in available verification time
- Wrongly capturing specifications
- Usage scenarios for Devices
- Power consumption of devices
- Security
- Co-verification of hardware and software
- Analogue -digital amalgamation


Latest Trends in verification

- Simulation
- Mixed signal verification
- Verification and Power dependencies
- Data Analytics

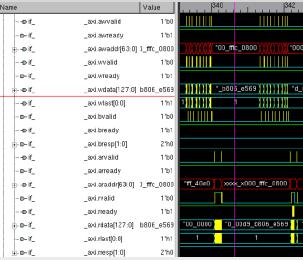
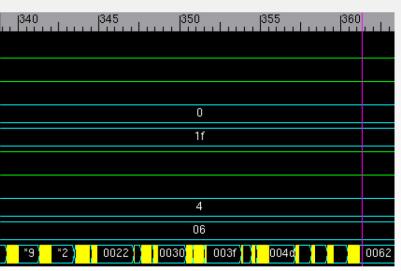
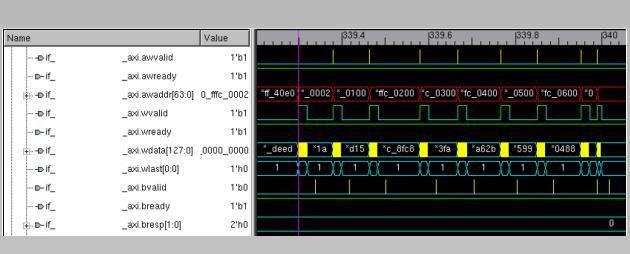


Figure 3: Read operation of AXI Burst Transfer

Name	Value	
[⊨] wr_req		
		St1
		St1
<u>⊕</u>		3'h0
<u>⊨</u>		5'h1f
		St1
		St1
⊕ Io_Counters		3'h4
⊷ ہے۔ Io_Counters		5'h06
∯∝ - Lo_Counters	Val[15:0]	16'h0062

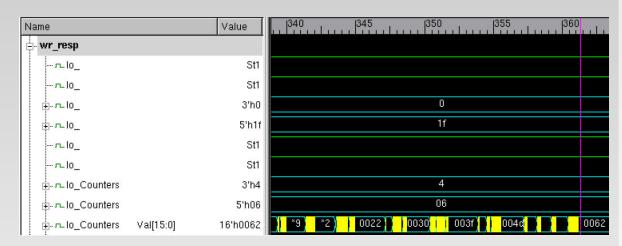

Figure 7: Write Response Transfers

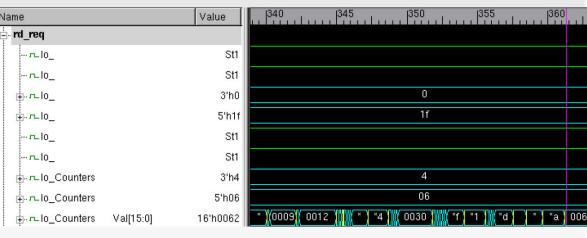

Figure 1: Configuration of Pointers

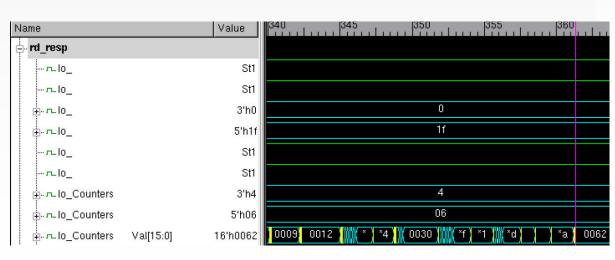
340.068		.07	340.072	340).074	340.076	
ʻfffc_0100	*fffc_0200	*fffc_0300	*fffc_0400	*fffc_0500	*fffc_0600		

344 , , , , , , , , , , , , , , , , , ,		
10_ffc_0508 ///////////////////////////////////	80 <u> </u>	0_fffc_0998
_05b7_7cf8 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)4fc	b65_bc5c)))))))))))))))))))))))))))))))))))
1 1111111111111111111111111111111111111		1
0		
xxxx_x000_fffc_0508))))()()))()()()()(x0_fffc_	_0980 *000_ffc_0390 / ////	xxx_x000_ffc_0998 ()()()()()()()(000.
"C9C1_cf6Z_33bd_05b7_7cf6	_04fc) *0_dd85_26c9	91_c0ad_f757_zb65_bc5c
1 10010000 1		1
0		

Figure 5: Burst Traffic on AXI Interface




Figure 2: Write operation of AXI Burst Transfer


Figure 4: Read Response on AXI Burst Transfer

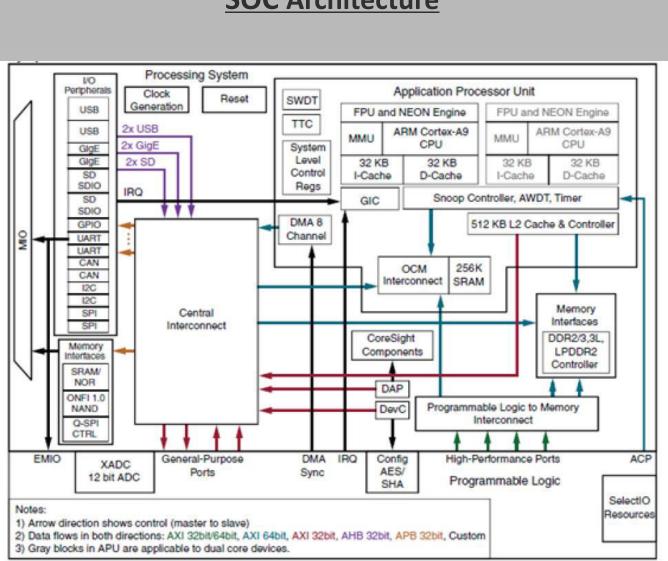

Figure 6: Write Request Transfers

Figure 9: Read Request Transfers

Figure 9: Read Response Transfers

- P. Ghosh and R. Srivastava, "Case Study: SoC Performance Verification and Static Verification of RTL Parameters," IEEE Proc 20th International Workshop on Microprocessor/SoC Test, Security and Verification (MTV), pp. 65–72, 2019.
- Noguera, Juanjo, and Rosa M. Badia. "System-level powerperformance trade-offs in task scheduling for dynamically reconfigurable architectures." Proceedings of the 2003 international conference on Compilers, architecture and synthesis for embedded systems. 2003
- Spear, Chris. SystemVerilog for verification: a guide to learning the testbench language features. Springer Science & Business Media, 2008.

SOC Architecture

REFERENCES

- Najm, Farid, and Jay Abraham. "Accounting for very deep sub-micron effects in silicon models." *EEdesign* Magazine (2001).
- Tuomi, Ilkka. "The lives and death of Moore's Law." First Monday (2002).
- Xilinx (2017), 'Zynq-7000 all programmable soc data.