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Abstract: Machine Learning (ML)-based Data-driven modelling is an efficient approach for good 

estimates of flow and maximum discharge at certain points within a basin. This paper is mainly 

aimed to evaluate the predictive capability of ML algorithms for daily streamflow modelling in the 

Besós River Basin (Spain), based on open source flow discharge and rainfall historical time series. 

In this sense, two modelling scenarios, without and with considering the antecedent hydrologic 

conditions, were evaluated; and three ML algorithms—Support Vector Machines, Random Forest 

(RF) and Gradient Boosting (GB)—compared to Multiple Linear Regression (MLR), were imple-

mented. The prediction results revealed that SVR model outperformed the other suggested models. 

Additionally, it was deduced that taking into account the preceding hydrologic conditions clearly 

improves the prediction results. 

Keywords: streamflow modelling; machine learning; data-driven; preceding hydrologic  

conditions; virtual sensor 

 

1. Introduction 

Rainfall-runoff modelling is believed to be complex, nonlinear, and time-varying 

because the basin response depends not only on hydrometeorological parameters but 

also on spatiotemporal irregularity in basin characteristics and rainfall patterns [1]. Usu-

ally, hydrologists develop and use different types of models to simulate hydrological 

processes. Regardless of their structural variations, these models generally fall into three 

main types, including physical, conceptual, and data-driven models (DDMs) [2]. 

Over the past two decades, data-driven approaches based on artificial intelligence 

(AI), have gained a drastically increasing interest from hydrologists [3], due to their sig-

nificant contribution to improving the accuracy, versus the failure stories of the classical 

and conventional methods in terms of spatial scale, time scale, amount of data needed, 

facilities, inability to handle nonlinear and non-stationary hydrological processes, and 

even in terms of accuracy, view the complexity of the equations governing the hydro-

logical cycle’s mechanisms which often require simplifications and theoretical assump-

tions leading to considerable errors and uncertainties [4]. 

Many different methods, statistical such as multiple linear regression (MLR), vari-

ous types of AI and machine learning (ML) algorithms like support vector machines 

(SVM) and artificial neural networks (ANN), have been widely applied in recent years 

[5]. Especially, ANN and SVM have the advantage of handling complex relationships 

between input and output variables and have been used successfully in various water 
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resources problems [6]. However, despite the application of several ML techniques 

available in the literature, the gradient boosting (GB) approach has not been widely ap-

plied to predict daily flows [7]. Also, for hydrological extremes, GB along with random 

forest (RF) are more explored for qualitative predictions rather than quantitative predic-

tions [4]. 

In this sense, this paper presents the application of three regression ML algo-

rithms—Support Vector Regression, Random Forest Regression and Gradient Boosting 

Regression —compared to MLR to model the daily flow discharge at the outlet of the 

Besós River basin (Spain) under two scenarios: without and with considering the ante-

cedent hydrologic conditions. The objective is to discuss and evaluate the performance of 

the aforementioned DDMs in daily streamflow prediction based on open-source flow 

discharge and rainfall historical time series by comparing them with each other and with 

the MLR model based on several statistical evaluation measures, and to evaluate the 

impact of using the preceding hydrologic conditions. 

2. Materials and Methods 

2.1. Study Location and Data Collection 

The Besós is a Mediterranean river characterised by a very irregular hydrological 

regime with highly variable flows related to climatic conditions. It is the collector of 

various tributaries that originate in the Catalan Pre-Coastal Range: Mogent, Congost, 

Tenes, Caldes and Ripoll rivers, as shown in Figure 1. Its hydrographic basin of ap-

proximately 1020 km² supports a population of almost one million inhabitants with a 

high consumption of water, mainly destined for industrial and urban use, since agricul-

ture, especially in its lower section, has been losing importance, almost disappearing. The 

Besós basin shows a pronounced relief formed by the coastal and pre-coastal ranges with 

elevations of up to 1350 m a.s.l. and steep slopes. As indicated by the topography, the 

geology of the area differs between the mountain ranges, composed mainly of granites, 

slate, limestone and sandstone, and the central valley where clay, sand, and conglomer-

ate deposits dominate. 

 

Figure 1. Study area and location of the meteorological and gauging stations. 
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In this study open-source historical series of daily flow and rainfall data between 

2003 and 2010 from the Catalan Water Agency and the State Meteorological Agency were 

gathered. Information was collected on a total of five gauging stations: “La Garriga”, 

“Castellar Valles”, “Lliçà de Vall”, “Montornès Valles”, “Santa Perpetua de Mogoda”, 

and three meteorological stations: “Barcelona”, “Barcelona Fabra” and “Sabadell Aero-

puerto”, were used to explore the applicability of ML models for daily flow discharge 

prediction at the target station “Santa Coloma de Gramenet”. Figure 1 shows the geo-

graphical distribution of the stations. 

2.2. Exploratory Analysis and Data Preparation 

2.2.1. Data Exploration 

The available collected data are distributed over a period from 1 January 2003 to 31 

December 2010, as some stations no longer have records after this date. The longest 

common period with the fewest missing values is from 1 January 2003 to 6 May 2008. 

Therefore, this observation period was considered in creating the prediction models. 

In this common period, the “Castellar del Vallès” gauging station has a considerable 

number of missing values (about 56.18%), so it was decided not to consider it in the 

modelling process, and the lost information can be therefore obtained from the “Sabadell 

Aeropuerto” meteorological station. Also, the meteorological stations and the “La Gar-

riga” gauging station present some missing values in their data series (<16%). For that, 

because data imputation may lead to additional uncertainties to those due to measure-

ment errors, it was decided to delete all data rows for which at least one station has a 

missing value and that the models learn from the rest of the data that are supposed to be 

sufficient for their training and validation. The resulting data time series contain a total of 

1404 daily rainfall and flow records. 

The basic information of the observatories and the dataset statistical analysis after 

dealing with missing values showed that the Besós basin receives in its lower part, rep-

resented by the “Sabadell Aeropuerto” station, an average annual rainfall of 415 mm, 

varying from 0 to 122 mm per day. The average flow discharge at its outlet (“Santa Co-

loma del Vallès) is 4.4 m3/s, and most flow values are below 20 m3/s. Only two values 

exceeded 80 m3/s during this observation period. Also, the flow discharge has never been 

zero. 

The parameters “Skewness” and “Kurtosis” were used to examine the data distri-

bution. Practically, all the data time series have very large values of these coefficients and 

therefore do not have a normal distribution. 

A correlation heat map was created to explore the relationship between the different 

data inputs, showing a good correlation between meteorological stations (rainfall) as well 

as between gauging stations (flow), while no correlation was detected between flow and 

rainfall, reflecting the non-linear rainfall-flow relationship. 

2.2.2. Data Model 

The selection of input variables is determined by a combination of prior knowledge 

of causality, examination of time series plots, data availability, and study objectives. In 

this study, we used rainfall and flow discharge data, with rainfall being the primary 

driving force of runoff. Since only one meteorological station was located within the ba-

sin, we utilized data from two neighbouring stations outside the basin (as shown in Fig-

ure 1) to define the rainfall in the differential basin between upstream gauging stations 

and the prediction point (target station). 

Given that the flow is effectively made up of contributions from different sub-areas 

whose travel time covers a range of values, the next step is the determination of the ap-

propriate lag time concerning the prediction output. This was carried out through a 

cross-correlation analysis between the flow at the outlet and the upstream and down-

stream rainfall and flow. The cross-correlation has shown a considerable influence of the 
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previous-day rainfall on the current value of the outlet flow for the three meteorological 

stations. From time t − 2, this correlation decreases to less than 0.3. Also, regarding the 

flow at the input stations, it was seen that there is a decreasing correlation from the same 

day of recording. The antecedent flow subsequent to time instant t − 2 does not contribute 

significantly to the outflow generation. Therefore, the antecedent values of flow and 

rainfall corresponding to time instants t and t − 1 were considered. 

When looking at the time step, several features are immediately obvious, such as the 

day of the month and the month of the year, which may helpful in understanding the 

flow periodicity or seasonality. It is then about creating features that extract and preserve 

hidden information within cyclical data, such as the distance between two events: day 30 

or 31 and day 1, or month 12 and month 1. This seems important as the missing values 

were removed. To do this, “sin” and “cos” were used to assign each cyclic variable (day 

and month) to a circle so that the smallest value for that variable appears right next to the 

largest value. Four cyclic features (daysin, daycos, monthsin, monthcos) with respect to the 

day and the month of the year were created to get a total of 18 input features. 

The general representative DDM for the first scenario can be defined as: 

Q̂t = f(Qit, Qit−1, Pkt, Pkt−1, daysin, daycos, monthsin, monthcos) (1) 

where Q̂t represents the predicted flow at time t at the “Santa Coloma de Gramenet” 

station; Qit is the flow recorded at time t at each of the predictor gauging stations; Qit−1 is 

the flow recorded at these gauging stations at time t − 1 (‘i’ ranges from 1 to 4); Pkt rep-

resents the rainfall at time t observed at each of the meteorological stations; Pkt−1 is the 

rainfall at time t − 1 observed at each of the meteorological stations (‘k’ ranges from 1 to 

3); daysin, daycos, monthsin, monthcos represent features or cyclical variables of day and 

month. 

These variables were used to predict the flow at the “Santa Coloma de Gramenet” 

station as a first scenario, which is intended to be extrapolated to basins without a 

gauging station or flow measurement, depending on their physiographic characteristics 

and climatic conditions. In the second scenario, in addition to these input variables, the 

antecedent flow discharge of the “Santa Coloma de Gramenet” station was also used as 

an input variable, since it indirectly describes the soil moisture status. Also, since the 

rainfall data contain zero values, such flows add more information meaning that the 

longer the zero-input interval, the more the output decreases. This was done by an au-

tocorrelation for the target variable dataset, between the previous values with the current 

one up to 5 lags. In this second scenario, DDMs can be used in poorly gauged or previ-

ously gauged catchments where flow measurements were interrupted or as a virtual 

sensor for the Besós river basin itself. The autocorrelation has shown a considerable in-

fluence of the two previous values (correlation ≥ 0.4). Therefore, the antecedent flow at 

the target station at times t − 1 and t − 2 was considered. This was also verified by trial 

and error experiments. 

The general representative DDM, in this second scenario can be defined as: 

Q̂t = f(Qit, Qit−1, Pkt, Pkt−1, Qot−1, Qot−2, daysin, daycos, monthsin, monthcos) (2) 

where Qot−1 and Qot−2 are the antecedent flows at times t − 1 and t − 2 observed at the 

“Santa Coloma de Gramenet” outlet gauging station. 

To prevent input data in larger numerical ranges from dominating those in smaller 

numerical ranges and to avoid numerical difficulties during computation, all input var-

iables are scaled to the range [0, 1] using the Min-Max Scaler method. The complete 

chronologically organized dataset is then divided into training and test datasets to get an 

approximate training/test split ratio of 80%/20%. 
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2.2.4. Hyperparameter Optimisation 

Models were trained with a range of hyperparameter values that was determined by 

examining various hydrological studies. Afterwards, the hyperparameter optimal values 

were determined through the trial and error process using the Grid Search technique for 

its simplicity and robustness, in the training and test datasets. Then, the optimal hy-

perparameters were maintained and the best models were used to predict the flow rate. 

2.2.5. Validation Metrics 

Four quantitative validation metrics were used to assess the prediction accuracy and 

to compare the different data-driven models based on their relative performance, in-

cluding: the coefficient of determination (R²), the Nash–Sutcliffe efficiency coefficient 

(NSE), the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE). 

3. Results and Discussion 

The values of the DDM-statistical performance metrics for the training and test pe-

riods are presented in Table 1. Hydrographs were also plotted to visualize the DDM be-

haviour, particularly for extreme values. 

Table 1. Model performance metrics for training and test periods. 

Scenario Model 
Training Test 

RMSE MAE R² NSE RMSE MAE R² NSE 

1 

MLR 1.783 0.780 0.819 0.779 0.806 0.502 0.819 0.808 

SVR 1.685 0.600 0.838 0.774 0.604 0.369 0.898 0.877 

GBR 1.062 0.558 0.936 0.928 0.720 0.480 0.856 0.844 

RFR 0.983 0.259 0.945 0.922 0.758 0.545 0.840 0.834 

2 

MLR 1.477 0.583 0.876 0.858 0.776 0.388 0.833 0.850 

SVR 1.563 0.492 0.861 0.805 0.578 0.307 0.907 0.890 

GBR 0.171 0.131 0.998 0.998 0.685 0.381 0.869 0.862 

RFR 0.921 0.207 0.952 0.933 0.624 0.368 0.892 0.890 

It is clear from Table 1 that the RFR and GBR models were more efficient in pre-

dicting the flow for the first scenario, in the training period, with a slight victory for the 

RFR model, respectively reaching an R² of 0.945 and 0.936; a RMSE of 0.983 m3/s and 

1.062 m3/s; a MAE of 0.259 m3/s and 0.558 m3/s, and approximately an equal NSE. How-

ever, the SVR outperformed all models in the test period for all metrics. 

MLR performance was not as good as the three other DDMs, but it was very ac-

ceptable concerning performance metrics. It has outperformed the RF model in the test 

period with respect to the MAE and the SVR model in the training period regarding the 

NSE. The fact that the MLR prediction values have a good correlation with the observed 

values is equivalent to the fact that the number of input gauging stations is slightly 

higher than that of meteorological stations, that the flow discharge values have more 

weight in the MLR equation than those for rainfall, and that flow inputs show a good 

linear correlation with each other, unlike rainfall inputs. 

Interestingly, the prediction results are satisfactory, and there are some improve-

ments in the performance of the models in the test period compared to the training pe-

riod, except for the GBR regarding the R² and NSE and the RFR regarding the MAE, R² 

and NSE. This may be the result of overfitting these models. 

The hydrographs in Figures 2 and 3 of the observed and predicted values for each 

model in the training period, as well as the test period at the target station indicate that, 

in general, the predicted flow fits well with the observed flow. 
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However, in the training period, it can be seen that there are more peaks than in the 

test period. The maximum peak observed in the training period was underestimated by 

all the models, but it can be seen that MLR, SVR and GBR managed to approximate it 

well, while the RFR presents a high relative error at this point. In general, the RFR has the 

best performance in the training period. 

Possible reasons for this result could be the better generalisation of SVR due to the 

structural risk minimisation approach leading to an optimal global solution. Regarding 

the overfitting in the GBR and the RFR models, it should first be remembered that these 

two models are based on building trees from a random Bootstrap sample, which makes 

both models stochastic, with an associated uncertainty to the predicted value. The high 

number of trees found to train the two models may be behind this overfitting. Also, GBR 

is a non-deterministic algorithm, i.e., even for the same input, it can present different 

outputs in different executions. 

Regarding the second scenario, the GBR outperformed all models in the training 

period with near-perfect performance. In the test period, the SVR in this case was also the 

best regarding all metrics. 

Some DDM-performance improvements are shown in the test period compared to 

the training period. Regarding SVR, all metrics have improved. For MLR, only RMSE and 

MAE have improved. Concerning the GBR and the RFR, on the contrary, have known a 

decrease in their performance, except for the RMSE of the RFR, which has improved. This 

overfitting, in addition to the aforementioned reasons, may be due to insufficient data 

size, or that the data split ratio for training and testing the models is not adequate. Gen-

erally, the simulated hydrographs fit well with the observed hydrographs. It is seen that 

the GBR has a great ability to predict flow peaks. All models predict well the flow at the 

basin outlet. 

When comparing the DDMs, it can be seen that the use of the antecedent flow dis-

charges has a great impact in improving their performance, with a reduction in the MAE 

of 23%, 17%, 21% and 33% for the MLR, SVR, GBR and RFR models. The RFR has shown 

the greatest improvement in performance during the test period with a decrease in RMSE 

and MAE of 18% and 33%, and an increase in R² and NSE of 6 and 7%, respectively. 

 

Figure 2. First scenario’s hydrographs of the observed and simulated flow discharge in the training 

and test periods. (a) MLR, (b) SVR, (c) RFR, (d) GBR. 
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Figure 3. Second scenario’s hydrographs of the observed and simulated flow discharge in the 

training and test periods. (a) MLR, (b) SVR, (c) RFR, (d) GBR. 

4. Conclusions 

To predict the daily flow at the outlet of the Besós river basin, the MLR and three 

data-driven ML models: SVR, RFR and GBR, were used. The obtained results have 

shown that the SVR model outperformed the other models whether with or without 

considering the preceding hydrologic conditions. MLR, as well as the decision 

tree-ensemble models (RFR and GBR), have also shown a good flow prediction capacity. 

It is worth noting that the proposed DDMs have demonstrated high efficiency in cap-

turing the real trend and the underlying phenomena of rising and falling flow curves. 

The use of the antecedent flows in the target gauging station had a positive impact on 

improving the performance of all models. 

To improve the prediction capabilities of ML models, in future work, it is recom-

mended: to use other variables to build a strong relationship with the streamflow; to 

perform a sensitivity analysis to input features to bring out those that contribute the most 

to the flow prediction; close attention must be paid to the data length and split ratio; the 

training phase should experience most of the streamflow patterns to allow the models in 

the test period to simulate the flow discharge with an acceptable level of accuracy. 
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