

Session E

MDPI

water

Hydrological Modelling of Basins under Variable Conditions

Mr. Mohamed Hamitouche, MSc | CIHEAM ZARAGOZA

Mr. Marc Ribalta, Sr. Data Scientist | Eurecat

By:

Model: "a simplified representation of a system at some particular point in time or space"

Modeling is the act of building a **model**.

Simulation: "Is fundamentally an imitation of a real process or system over time"

A **simulation** is the process of using a **model** to study the behavior and performance of an actual or theoretical system

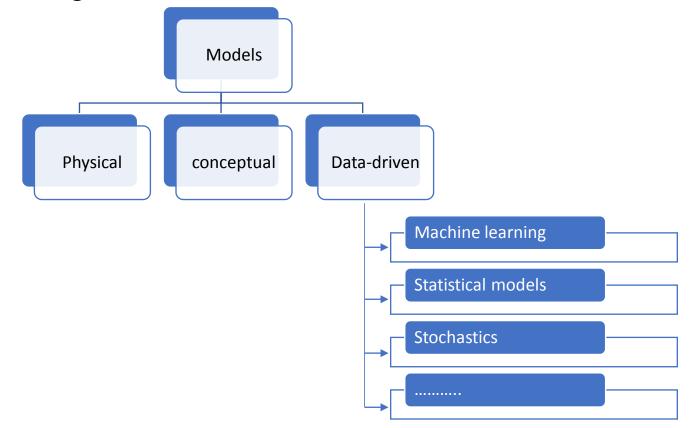
(IGI Global dictionary)

« **Prediction** is concerned with estimating the outcomes for unseen data. For this purpose, you fit a model to a training data set, which results in an estimator $\hat{f}(x)$ that can make predictions for new samples x.

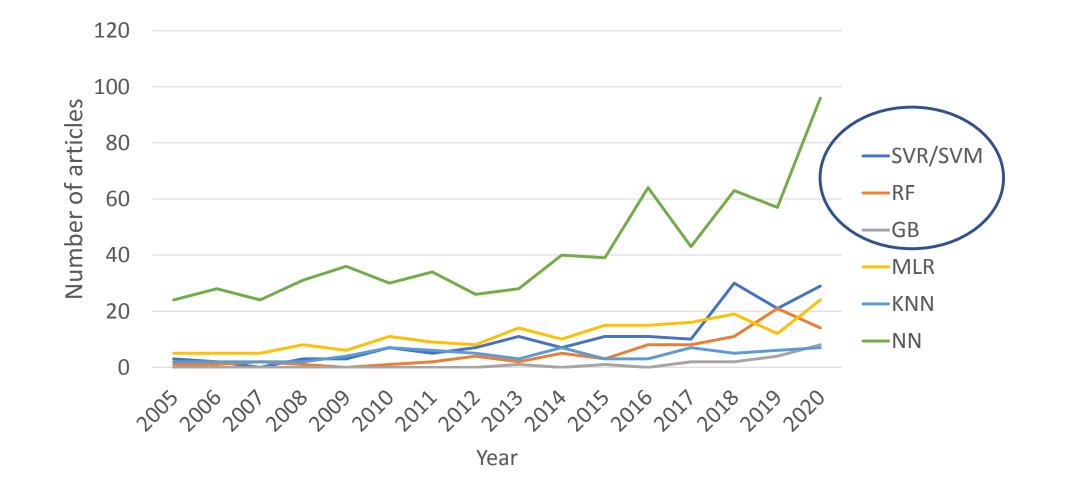
Forecasting (prediction?) is a sub-discipline of prediction in which we are making predictions about the future, on the basis of time-series data. Thus, the only difference between prediction and forecasting is that we consider the temporal dimension. »

Introduction

 The development of flow forecasting or prediction models helps a lot in the management of water uses, the development of water resource distribution policies and risk management.



Literature



Machine learning models used in streamflow prediction/modelling/forecasting (Scopus)

Objective

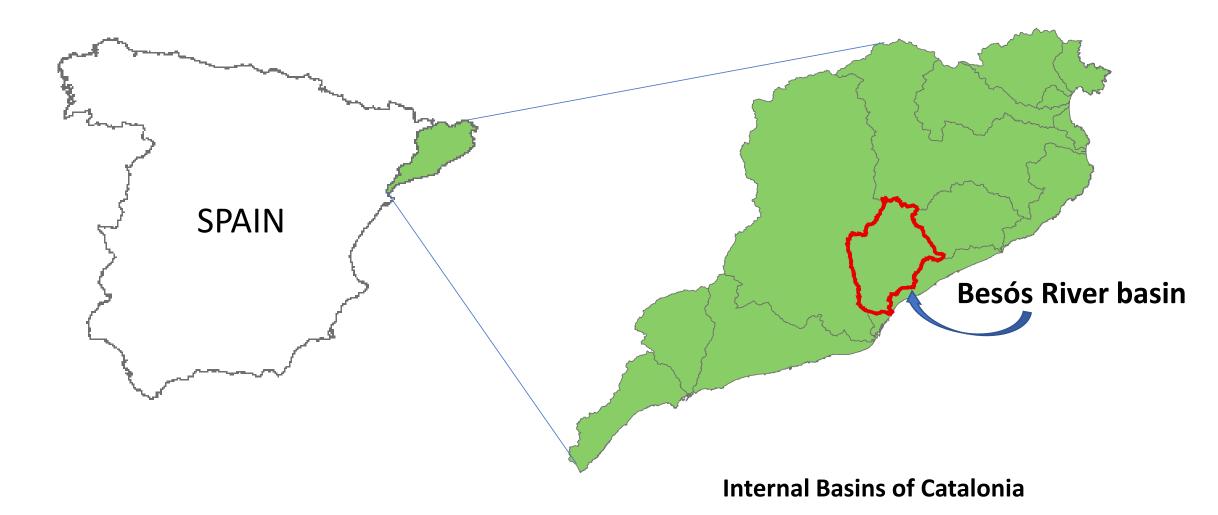
Utilise / train the ML models to predict the daily flow at the gauging station (target)
 "Santa Coloma de Gramenet" in the Besós river based on rainfall and flow data

• Compare these models with MLR

• Compare these models with each other

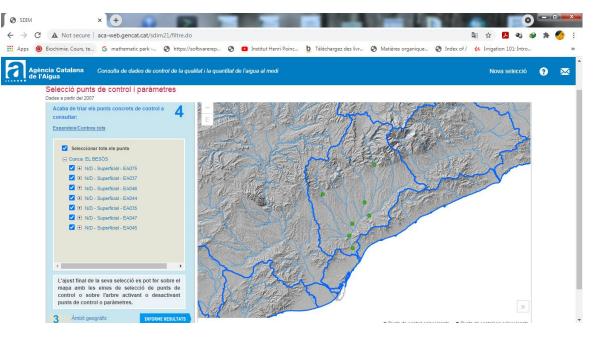
• Deduce which has been the best prediction model

Study zone



Data Collection

IET OpenData × +				
C opendata.aemet.es/centrode				ेषि 🛧 🖊 🔩 🍕
Biochimie. Cours, te G mathemati	: park 🔇 https://softwarerep 🔇 I	Institut Henri Poinc b Télécha	rgez des livr 🚷 Matières organique	. 🚱 Index of / 🚺 Irrigation 101: Intro
	AEMet	Acceso General		001001010101 10PEN10DATA0
	Agencia Estatul de Meteorología	Acceso General	1:1 61.12	100100100110 Agencia Estatul de Meteorología
Introduzca su API Key:				
-				
eyJhbGciOiJIUzI1NiJ9.eyJzdWli	iOiJhcm1vaDk0QGdtYWlsLmNvbSlsImp	.0aSI6IjE3NDQ3YWQ5LWZmNzcti	NDhIMy04MGMxLTcxYjY0OGRIZjU;	zNCIsImlzcy161kFFTUVUIIwiaWF01jox
Mostrar 100 v registros				Buscar:
Observación convencional				
Mensajes de observación.	Seleccione tipo de parte 🔹			Obtener
Último elaborado	concentration appendix			
Datos de observación. Último	Seleccione una provincia •	Seleccione una estación		Obtener
elaborado				
Redes especiales				
Datos de radiación global,				
				Obtener
directa o difusa. Último elaborado				
elaborado				
	Seleccione una estación 🔹			Obtener



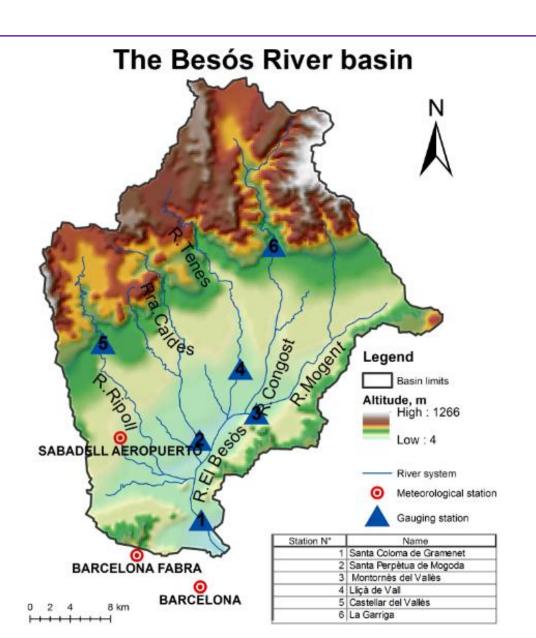
https://opendata.aemet.es/centrodedescargas/productosAEMET

http://aca-web.gencat.cat/sdim21/

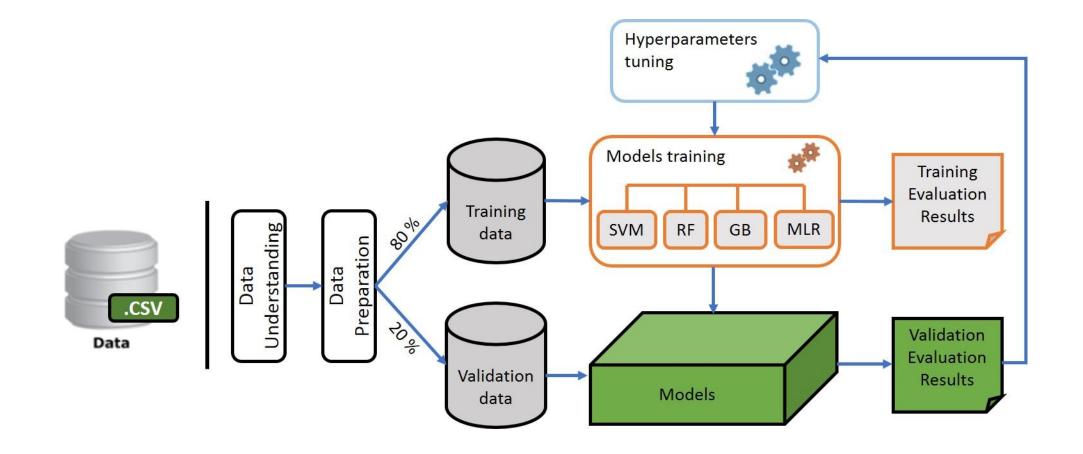
Spatial distribution

2 scenarios:

- Without considering the antecedent flow in the target gauging station (outlet)
- With considering the antecedent flows in the target gauging station (outlet)



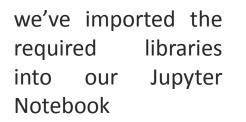
Methodology



General Scheme

Prerequisite Libraries

sklearn is a free software machine learning library for Python



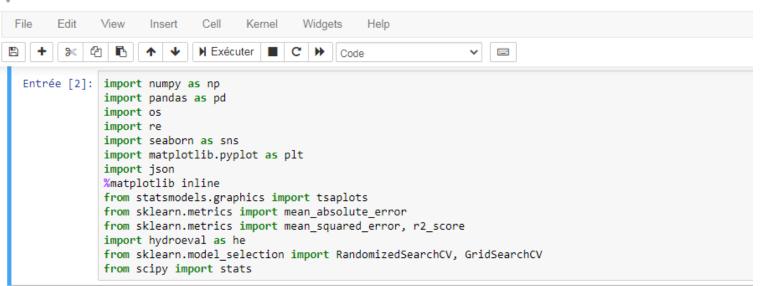
NumPy is a Python-based library that supports large, multi-dimensional arrays and matrices. Also, NumPy has a large collection of high-level mathematical functions that operate on these arrays.

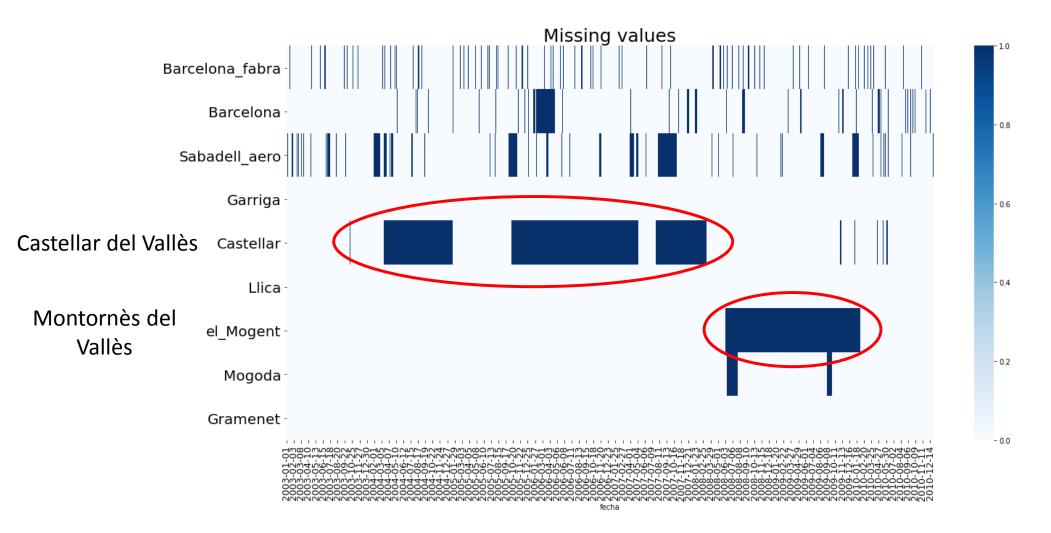
matpl <a>ktlib

Data Visualization

Pandas is a Python-based library written for data manipulation and analysis.

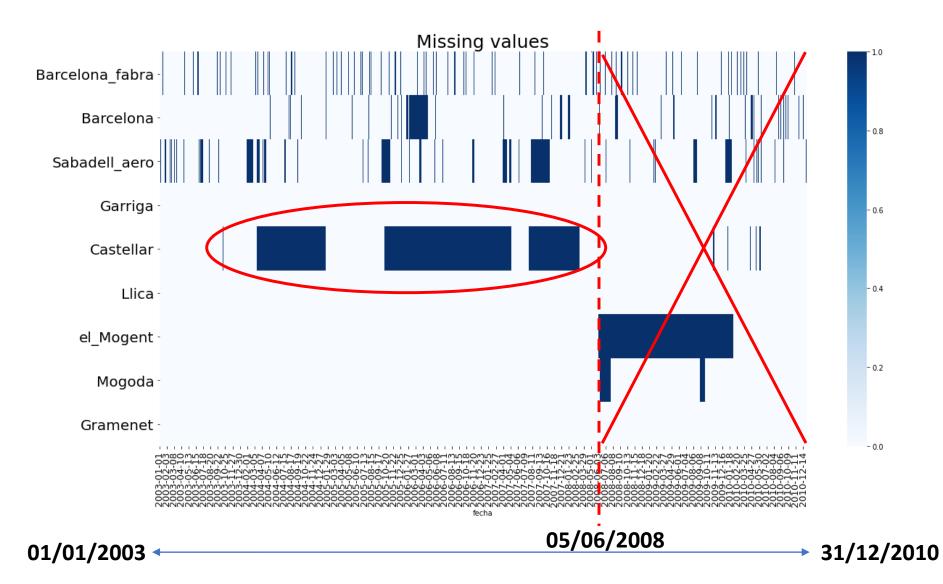
JUPYTER Proyecto_indiv Dernière Sauvegarde : 08/06/2021 (modifié)

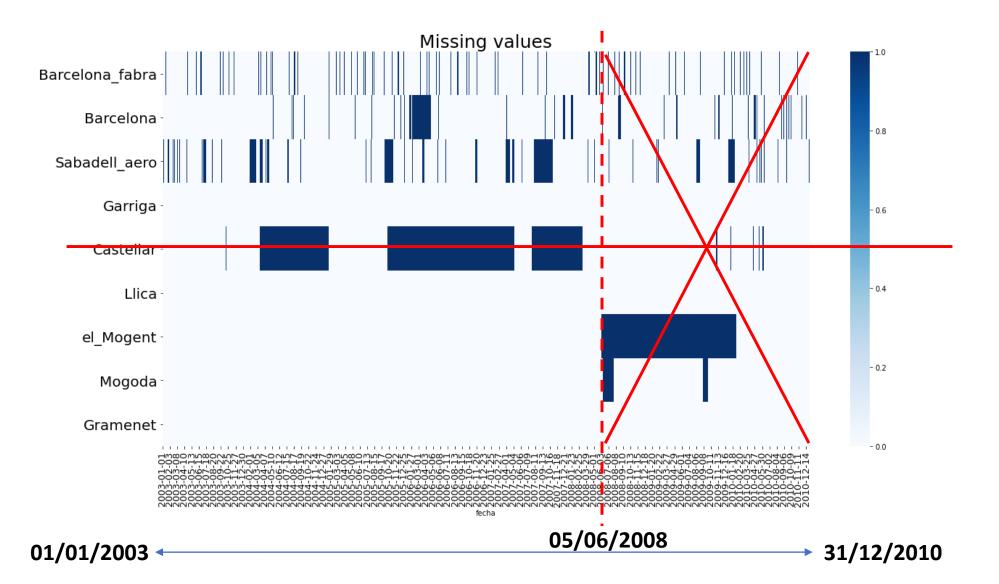


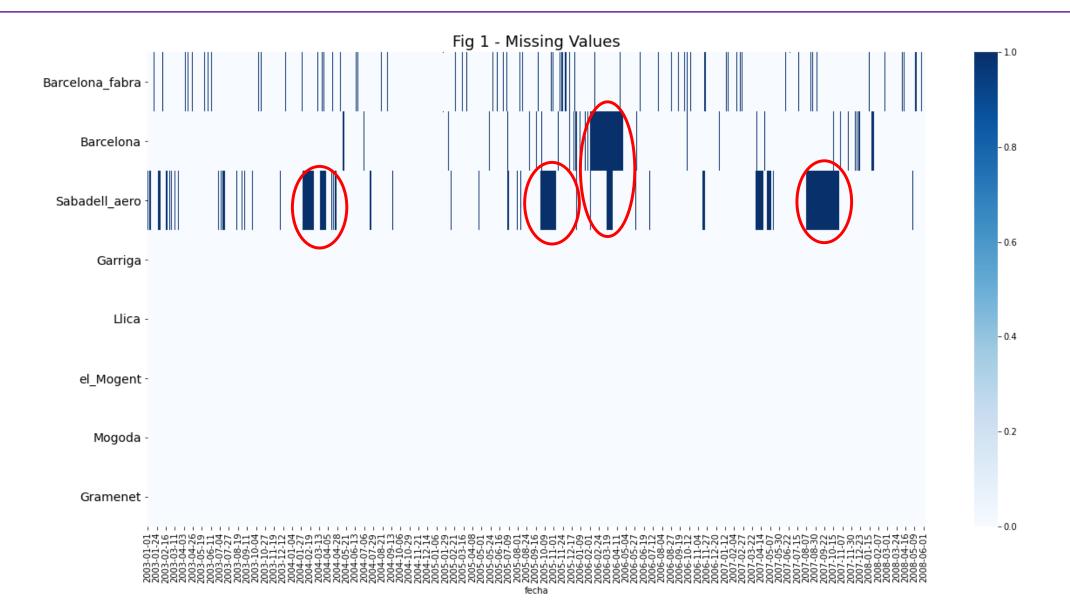


01/01/2003

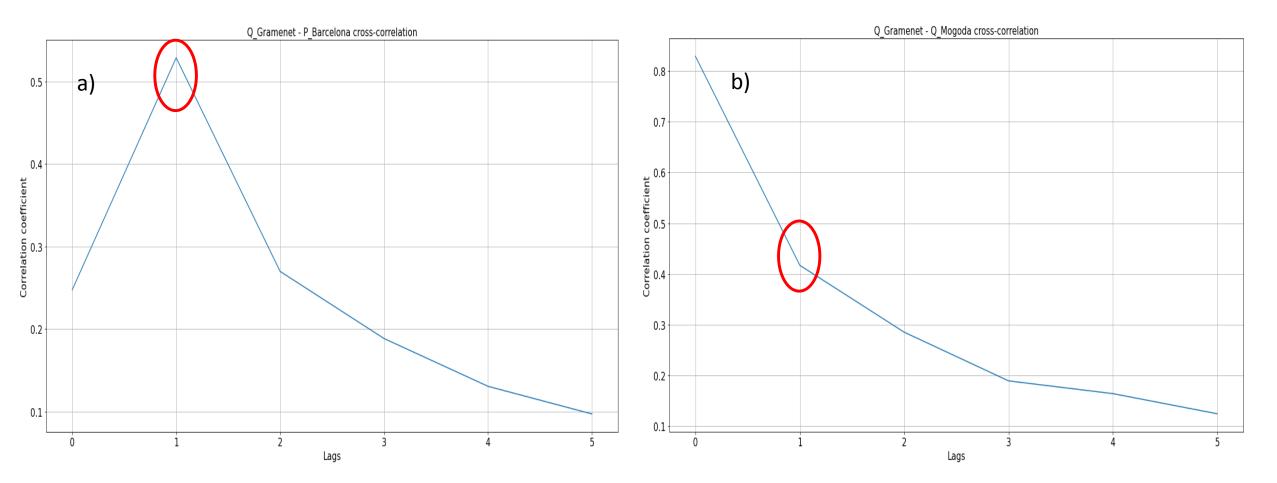
31/12/2010





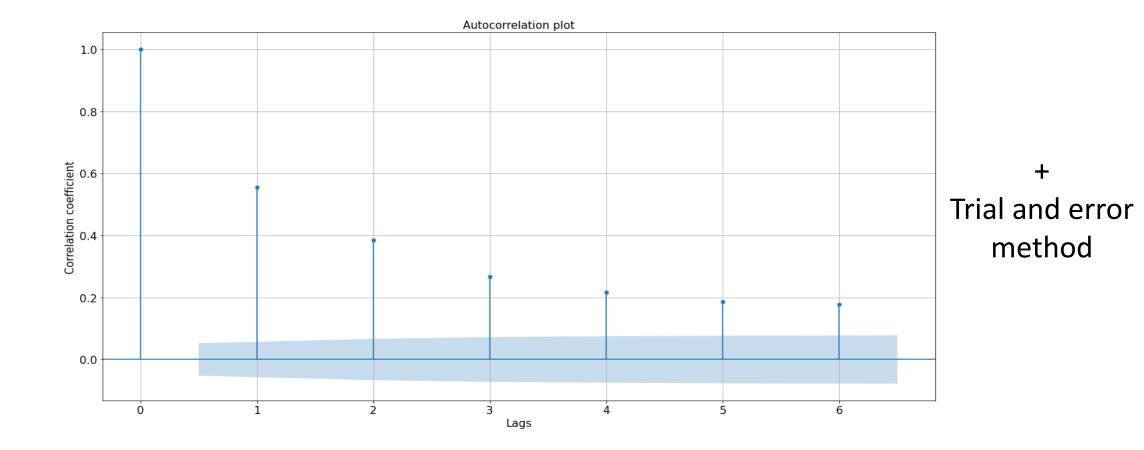


Relevant Lag times

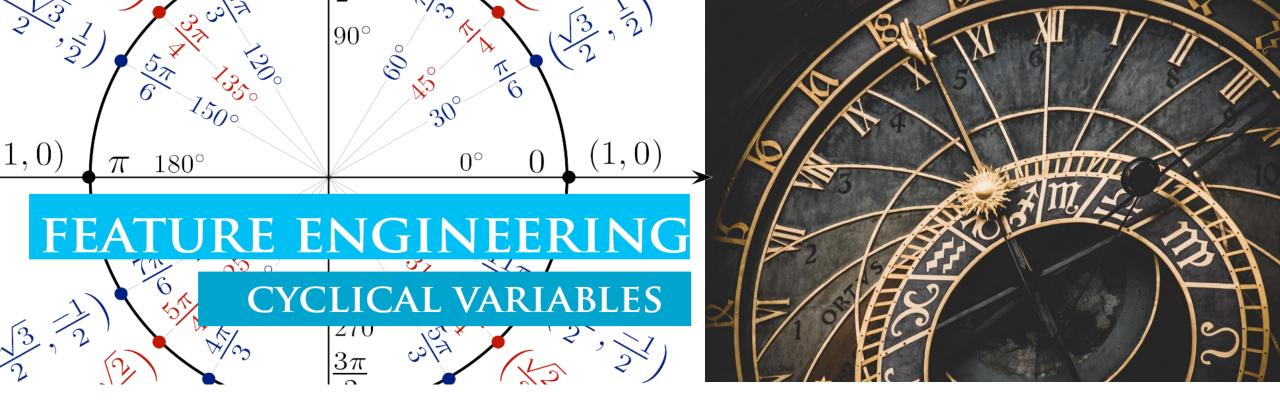


Cross-correlation between the flow at the outlet and the precipitation and flow at the input meteorological and gauging stations [a]: Barcelona meteorological station; b): gauging station of Santa Perpètua d Mogoda]

Relevant Lag times



Autocorrelogram



The Cyclical Formula

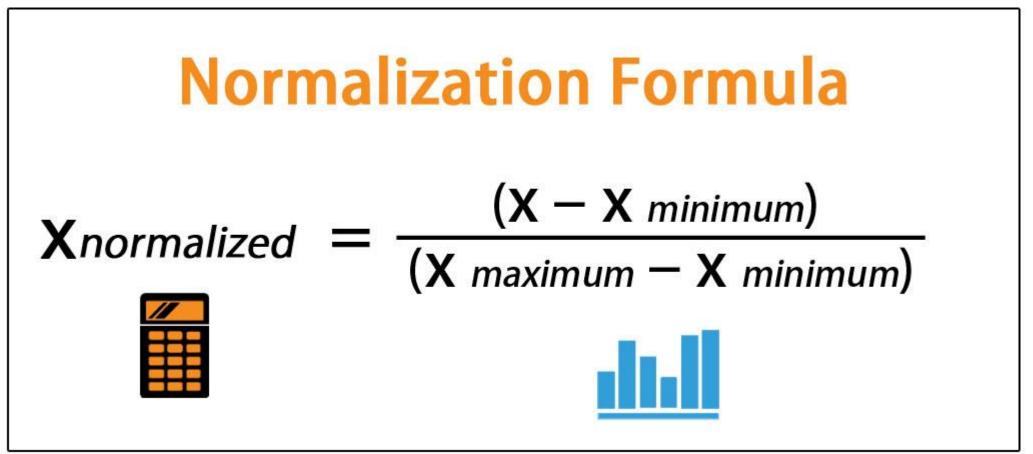
the general formula to convert a variable into a set of cyclical features:

$$x = \sin\left(\frac{a \times 2\pi}{\max\left(a\right)}\right)$$

$$y = \cos\left(\frac{a \times 2\pi}{\max(a)}\right)$$

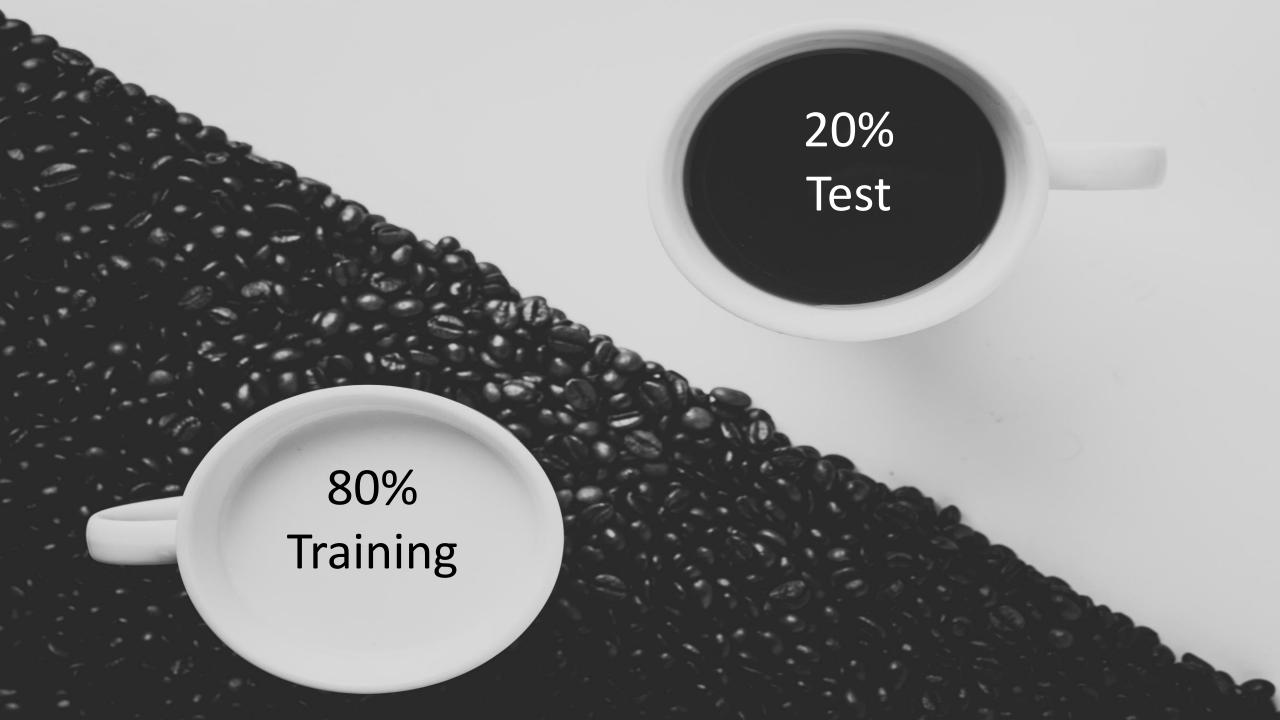
Wind direction, seasons, time, days (of a month, year, etc.) are all cyclical variables

Data Normalisation



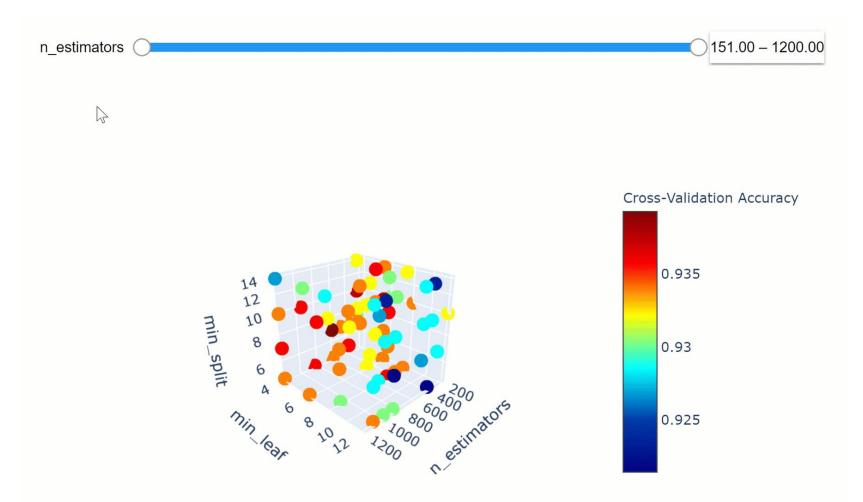
https://www.wallstreetmojo.com/normalization-formula/

Min-Max Scaler

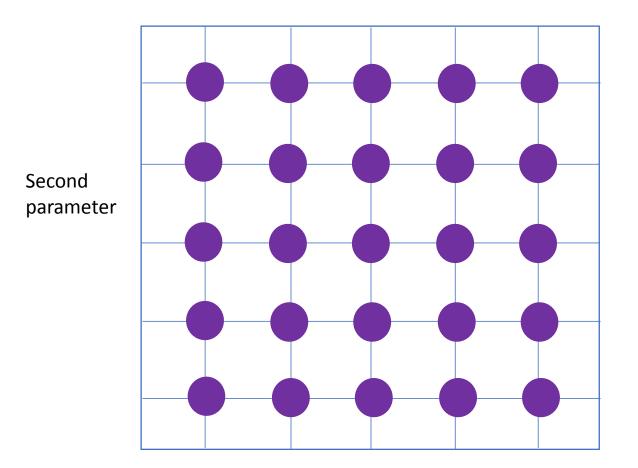


Model							
	hyperparameters						
SVR	C						
	8						
	γ						
	X ₁ = Number of gradient boosted trees						
	X ₂ = The maximum depth of a tree						
GBR	X_3 = The number of variables to use in each node						
GDR	X_4 = learning rate parameter which controls the magnitude of each tree's						
	contribution to the final result						
	X_5 = the fraction of samples to select in each tree						
RFR	n _{tree}						
	m _{try}						

Hyperparameter Optimisation



Grid Search



- Set a range of values for each hyperparameter
- Try all possible combinations

First parameter

Cross validation

Validation metrics

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Q_{t,obs} - Q_{t,pred})^2} \qquad 0 < RMSE < \infty$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} \left| Q_{t,obs} - Q_{t,pred} \right| \times 100 \quad 0 < MAE < \infty$$

$$R^{2} = \frac{N \sum_{i=1}^{N} (Q_{t,obs} - \bar{Q}_{t,obs}) (Q_{t,pred} - \bar{Q}_{t,pred}) - \sum_{i=1}^{N} (Q_{t,obs}) \sum_{i=1}^{N} (Q_{t,pred})}{\sqrt{\left[\left(N \sum_{i=1}^{N} (Q_{t,obs}) - \left(\sum_{i=1}^{N} (Q_{t,obs}) \right)^{2} \right) \left(N \sum_{i=1}^{N} (Q_{t,pred}) - \left(\sum_{i=1}^{N} (Q_{t,pred}) \right)^{2} \right) \right]}} \qquad 0 < R^{2} < 1$$

$$NSE = 1 - \frac{\sum_{i=1}^{N} (Q_{t,obs} - Q_{t,pred})^{2}}{\sum_{i=1}^{N} (Q_{t,obs} - \bar{Q}_{t,obs})^{2}}$$

Results – 1st scenario

Results – 2nd scenario

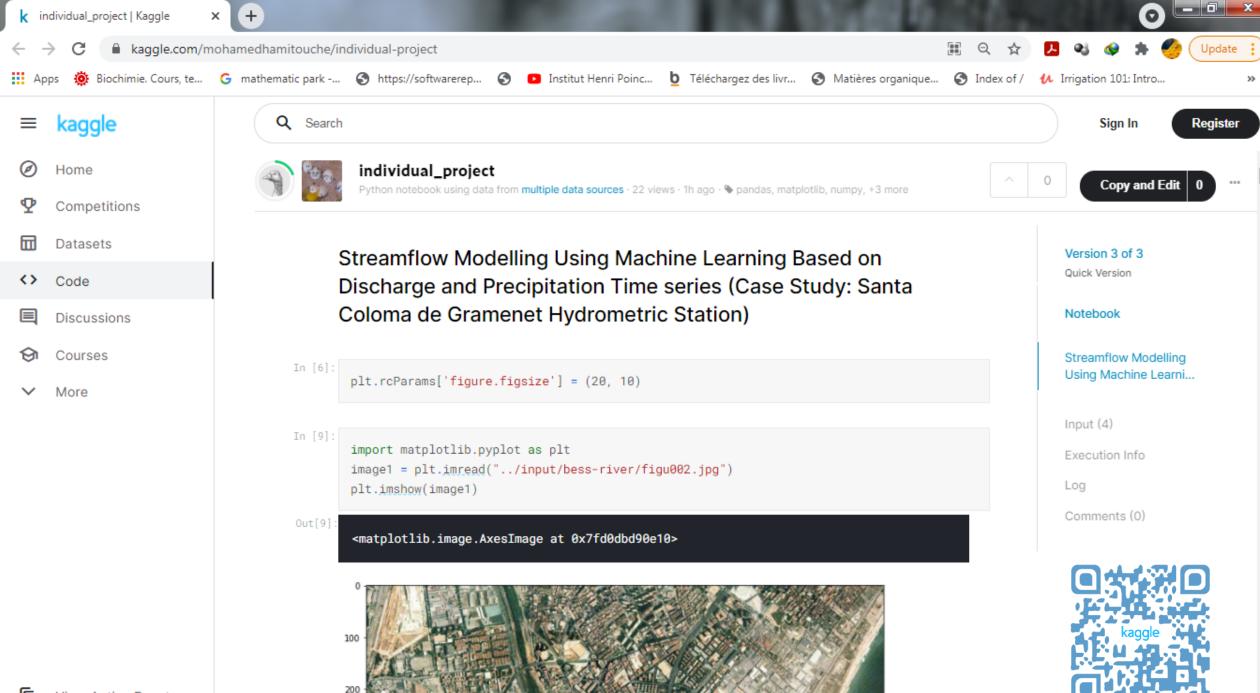
Scenario	Model	Training				Test			
		RMSE	MAE	R ²	CE	RMSE	MAE	R ²	CE
1	MLR	1,783	0,780	0,819	0,779	0,806	0,502	0,819	0,808
	SVR	1,685	0,600	0,838	0,774	0,604	0,369	0,898	0,877
	GBR	1,062	0,558	0,936	0,928	0,720	0,480	0,856	0,844
	RFR	0,983	0,259	0,945	0,922	0,758	0,545	0,840	0,834
2	MLR	1,477	0,583	0,876	0,858	0,776	0,388	0,833	0,850
	SVR	1,563	0,492	0,861	0,805	0,578	0,307	0,907	0,890
	GBR	0,171	0,131	0,998	0,998	0,685	0,381	0,869	0,862
	RFR	0,921	0,207	0,952	0,933	0,624	0,368	0,892	0,890

Conclusions

- The SVR has been the best prediction model, whether it is for the first or second scenario
- In the training period, the RFR and GBR models have been with the best performance compared to other models.
- They have a better performance and so great than the test period
- The MLR, although it has the lowest (worst) performance, has given very acceptable results
- The use of previous flows at the target gauging station has improved the results for all models, both in the training period as well as in the test period.

Recommendations to improve the model performance

- Find other data sources, other types of data, spatial optimisation techniques
- Sensitivity analysis to input data
- Analysis of sensitivity to the length of the input data and the split ratio
- Using Evolutionary algorithms like GA, BO,... for a better optimisation of the hyperparameters
- Develop other types of ML models with better predictive power
- Xgboost GB



Webgraphy

- <u>https://scikit-learn.org/stable/index.html</u>
- <u>https://pypi.org/</u>
- <u>http://blog.davidkaleko.com/feature-engineering-cyclical-features.html</u>
- <u>https://towardsdatascience.com/</u>
- <u>https://github.com/</u>
- <u>https://stackoverflow.com/</u>
- https://www.kaggle.com/
- <u>https://medium.com/</u>
- <u>https://www.lovelyanalytics.com/</u>
- <u>https://www.analyticsvidhya.com/</u>
- <u>https://datascientest.com/</u>

Thank you For your attention!

