$10^{\text {th }}$ International Electronic Conference on Synthetic Organic Chemistry (ECSOC-10). 1-30 November 2006. http://www.usc.es/congresos/ecsoc/10/ECSOC10.htm \& http://www.mdpi.org/ ecsoc-10/

Probing the Parallel Kinetic Resolution of Racemic Oxazolidinones using Quasi-enantiomeric Profens

New address: Department of Chemistry, The University of Hull, Cottingham Road, Kingston upon Hull, UK HU6 7RX ${ }^{\text {}}$ Onyx Scientific Limited, Units 97-98, Silverbriar, Sunderland Enterprise Park East, Sunderland, UK SR5 2TQ

Mutual kinetic resolution (MKR)

We have recently reported ${ }^{4}$ the mutual kinetic resolution of a racemic active ester (rac)-7 (derived from 2 -phenyl propionic acid) using a sacemic oxazolidinone, like (rac)-6, to give the corre
syn-adduct 8 with high diastereocontrol (Scheme 2).

Proposed PKR using differential profens

Parallel kinetic resolution (PKR)
We have extended this approach ${ }^{4}$ by resolving the active ester, 7 , by We have extended this approach ${ }^{4}$ by resolving the active ester, 7 , by
employing two complementary enantiomerically pure quasi-
enantiomeric oxazolidinones $(R)-6$ and $(S)-9$ to give the corresponding enantiomerically pure syn-adducts 8 and 10 in good yields and with high levels of diastereoselectivity (Scheme 2).

PKR using quasi-enantiomeric profens

Proposed resolution of oxazolidinones

We report an exterin of mis meta for racemic Evans' oxazolidin like (rac)-6, resolution of racemic Evans' oxazolidinones, like (rac)-6, using two
complementary quasi-enantiomeric profens (Schemes 3 and 4). We chose to use the enantiomeric isotopomers $(R)-7-d_{3}$ and (R)$\left.{ }^{13} \mathrm{C}\right]-7$ as surrogates for their non-labelled (R)-enantiomer 7 as this

PKR using quasi-enantiomeric profens

Addition of an equimolar mixture of these active esters $(R)-7$ and (S) 11 to the lithiated quasii-enantiomeric oxazolididinone [derived from (rac)-6 (2 equivalents)] under our standard conditions, gave a
separable quasi-enantiomeric mixture of syn-8 and syn-12 in good yield and excellent diastereoselectivity (Scheme 6).
Our attention next turned to the use of naproxen (S)-11 and ibuprofen R)-13 as complementary quasi-enantiomeric resolving agent (Scheme 7). Simple addition of the lithiated racemic oxazolidinone
[derived from derived from (rac)-6] to the active esters (S)-11 and $(R)-13$, gave the equired pair of complementary quasi-enantiomeric syn-adducts 12
and 14 with excellent stereocontrol (Scheme 8). These adducts were and 1 with excellent stereocontrol (Scheme 8). These adducts were
efficiently separated by column chromatography to give the corresponding diastereoisomerically pure adducts in good yields.

We studied two combinations of quasi-enantiomeric isotopomers, namely $(S)-7 /(R)-7-d_{3}$ and $(S)-7 /(R)-\left[{ }^{13} \mathrm{C}\right]-7$, for the resolution of oxazolidinone,
$($ rac) -6 , as this would closely match our original mutual resolution (Schemes 1 and 5). Using an equimolar amount of these quasi-enantiomeric profen gave, a distinguishable pair of single diastereoisomeric adducts syn-888-d
and $s y n-8 /{ }^{3} \mathrm{C} /-8$, respectively, with high diastereoselectivity $(>92 \%$ de in all cases) (Scheme 5).
ald

With this information in-hand, we next focussed on the use of the naproxen derived active ester (S)-11 as a surrogate for the $(S$ separability (Scheme 6).

Conformation of active esters
Origin of stereocontro
Proposed mnemonic for stereocontrol
Conclusion

The origin of this stereocontrol is intriguing. We were originally interested in the use of a pentafluorophenol as a pro-eaving group due to its ease of incorporation, large conformational size and reliability as an
efficient leaving group. Closer inspection of these active esters (S) 11 efficielt e eaving group. Ceser inspection of hese active esters (()-11
and $(R)-13$ reveals the pentafluorophenyl ring and neighbouring carbonyl group to be positioned near orthogonal to each other (Scheme 9).

Formation of these adducts, syn-12 and syn-14, was achieved by the espectively (Scheme 10). $(S)-6($ Li) must be oriented (relative to the active esters) to allow efficient lithium cation transfer from themselves to form the intermediate alkoxides (not shown). The favoured pathway appears to be preferred when the conformationally large pentafurophenyl group ${ }^{5}$ and towards the the conformationally large pentafluorophenyl group ${ }^{5}$ and towards the
smaller Ar $\mathrm{r}^{1} \mathrm{CHM}$ and $\mathrm{Ar}^{2} \mathrm{CHMe}$ motifs (Scheme 10). This particular arrangement is very interesting as it suggests a stereochemical itteraction between the stereogenicicty on the active ester and in-coming lithiated oxazolidinone - this presumably accounts for the increased
stereocontrol over other pro-leaving groups. ${ }^{5}$

We have shown an efficient parallel kinetic resolution of racemic Evans' oxazolidinones using a combination of quasi-
enantiomeric profens. This methodology appears to be efficient for a variety of structurally related oxazolidinones [e.g., (rac)-6] and quasi-enantiomeric profens [e.g., (S)-11 and (R)-13] leading predictably to te required separabe, S - 11 areoisomerically pure, syn-adducts 12 and 14 in good yield.
Reference

1. Eames, J. Angew. Chem. Int. Ed. 2000, 39,885 and references therein
Vedejs, E:; Rozners, E. J. Am. Chem. Soc. 2001, 123, 2428.
2. Liao, L.; Zhang, F.; Dmitrenko, O.; Bach, R.D.; Fox, J.M. J. Am. Chem.
Soc. 2004, 126, 4490.
3. Davies, S.G.; Garmer, A.C.: Long, M.J.C.; Smith, A.D.; Sweet, M.

4. Coumbarides, G.S.; Eames, J.; Flinn, A.; Northen, J.; Yohannes, Y. Coumbarides, G.S.; Eames, J., Filinn, A.; Northen,
