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Abstract: Trichomonas vaginalis (Tv) is the causative agent of the most common, non-
viral, sexually transmitted disease in women and men world-wide. Since 1959 
metronidazole (MTZ) has been the drug of choice in the systemic treatment of 
trichomoniasis. However resistance to MTZ in some patients and the great cost 
associated to the development of new trichomonacidals make necessary the development 
of computational methods that shorten the drug discovery pipeline. Toward this end, 
bond-based linear indices, new TOMOCOMD-CARDD molecular descriptors, and linear 
discriminant analysis (LDA) were used to discover novel trichomonacidal chemicals. The 
obtained models, using non-stochastic and stochastic indices, were able to classify 
correctly 89.01% (87.50%) and 82.42% (84.38%) of the chemicals in training (test) sets, 
respectively. These results validate the models for use in the ligand-based virtual 
screening. Also they showed large Matthews’ correlation coefficients (C) of 0.78 (0.71) 
and 0.65 (0.65) for the training (test) sets, correspondingly. The result of predictions on 
the 10% full-out cross-validation test also evidenced the robustness of the obtained 
models. Later, both models were applied to the virtual screening of 12 compounds 
already proved against Tv. As a result, they correctly classified 10 out of 12 (83.33%) 
and 9 out of 12 (75.00%) of the chemicals, respectively; which is a more important 
criterion for validating the models. In addition, these classification functions were applied 
to a library of seven chemicals in order to find novel antitrichomonal agents. These 
compounds were synthesized and tested for in vitro activity against Tv. As a result, 
experimental observations approached to theoretical predictions since it was obtained a 
correct classification of 85.71% (6 out of 7) of the chemicals. Besides, out of the seven 
compounds that were screened, synthesized and biologically assayed, six compounds 
(VA7-34, VA7-35, VA7-37, VA7-38, VA7-68, VA7-70) showed pronounced cytocidal 
activity at the concentration of 100µg/ml at 24h (48h) within the range of 98.66%-100% 
(99.40%-100%) while only two molecules (chemicals VA7-37 and VA7-38) showed high 
cytocidal activity at the concentration of 10µg/ml at 24h (48h): 98.38% (94.23%) and 
97.59% (98.10%) correspondingly. The LDA-assisted QSAR models presented here 
could significantly reduce the number of synthesized and tested compounds and increase 
the chance of finding new chemical entities with trichomonacidal activity. 
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 “You know my methods. Apply them.”  
                                                         Conan Doyle
 

 
1. Background 

Trichomonas vaginalis (Tv) is a common sexually transmitted infection that is 

increasingly recognized as an important infection in women and men [1,2]. Recent 

estimates have suggested that Tv infections account for nearly one-third of the 15.4 

million cases of sexually transmitted diseases in the United States [3]. In 1995, the World 

Health Organization estimated the number of adults with trichomoniasis at 170 million 

worldwide, more than the numbers for gonorrhea, syphilis, and chlamydia combined [4]. 

This parasite is also known to be the main cause of vaginitis, cervicitis and urethritis 

in women and may be responsible for prostatitis and other genito-urinary syndromes in 

men [5,6].  Infection with this organism has been linked to various additional pathologic 

manifestations, including cervical neoplasia [7-10], atypical pelvic inflammatory disease 

[11], and tubal infertility [12], and has been reported to be a risk factor in the 

development of posthysterectomy cuff cellulites [13]. Infection with Tv has also been 

related to premature rupture of placental membranes, and low birth weight [14,15]. 

Intrauterine transmission of cytomegalovirus has been reported to be increased by Tv 

infection [16]. As similar, this infection can elevate the risk of acquiring human 

immunodeficiency virus [17,18]. 

Although Tv was first described by Donné in 1836, research on this organism did not 

begin until the 20th century. The research has been a progression of phases throughout 

the last 60 years and has gone from developing axenic culture and defining nutritional 

requirements to finding an effective treatment. In the 1960s and 1970s, research focused 

on biochemical tests and microscopic examination to understand the growth 
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characteristics and behavior of the organism. It was not until the 1980s that immunologic 

methods and molecular biological techniques became available and were applied to study 

the pathogenesis and immunology of this organism [2] 

Until 1959, topical vaginal preparations available against trichomoniasis provided 

some symptomatic relief but were ineffective as cures [19]. In 1959, a nitroimidazole 

derivative of a Streptomyces antibiotic, azomycin, was found to be highly effective in the 

systemic treatment of trichomoniasis [20]. This derivative was a,b-hydroxyethyl-2-

methyl-5-nitroimidazole, commonly referred to as metronidazole (MTZ) and marketed 

under the trade name Flagyl. Other nitroimidazoles, although unavailable in North 

America, are also approved for clinical use in other parts of the world. These include 

tinidazole [21], ornidazole [22], secnidazole [23], flunidazole [24], nimorazole [25], and 

carnidazole [26]. These nitroimidazoles are not themselves cytocidal against Tv, but their 

metabolic products are [27].  

MTZ enters the cell through diffusion[4] and is activated in the hydrogenosomes of 

Tv [28]. Here, the nitro group of the drug is anaerobically reduced by pyruvate-

ferredoxin oxidoreductase [28]. This results in cytotoxic nitro radical-ion intermediates 

that break the DNA strands [29]. The response is rapid: cell division and motility cease 

within 1h and cell death occurs within 8h as seen in cell culture [30]. 

The recommended MTZ regimen results in cure rates of approximately 95% [31]. In 

fact, MTZ is the drug now most widely used in the treatment of anaerobic protozoan 

parasitic infections caused by Tv, Giardia duodenalis, and Entamoeba histolytica [20,32-

35]. In addition, it is remarkably safe compared to the most toxic antiprotozoal products 

[36].  
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Although there are clinical reports [37-44] that document the refractoriness of 

infections with Tv to treatment with MTZ, susceptibility tests have failed to demonstrate 

conclusively that the parasites isolated from such cases after treatment were resistant to 

this drug [45,46]. Thus, the resistance of Tv has not been generally accepted as the factor 

responsible for failure of MTZ therapy [47], since reinfection, irregular medication, poor 

absorption of the drug, and its inactivation by the vaginal flora have not been excluded 

[46,48,49]. However, a strain of Tv, unequivocally resistant to MTZ, was recently 

isolated from a female patient who had not responded to two courses of treatment with 

this agent. The current report is concerned with the isolation of this strain and its in vitro 

and in vivo susceptibilities to MTZ and other 5-nitroimidazole derivatives [50]. 

Although MTZ resistance has been considered rare, treatment of these rare patients 

who do not respond to treatment is extremely problematic for physicians and is 

associated with enormous patient suffering [51]. A good alternative to palliate this 

problem could be clinical treatment with other nitroimidazoles but unfortunately all of 

them have similar modes of antibacterial activity to MTZ [52], and therefore resistance to 

MTZ often includes resistance to the other nitroimidazoles [53]. 

Currently, is clear that new trichomonacidal agents are needed to treat resistant 

organisms. However, the great cost associated to the development of new compounds and 

the small economic size of the market for antiprotozoal drugs makes this development 

slow. For this reason, it is necessary to develop computational methods permitting 

theoretical –in silico- evaluations of trichomonacidal activity for virtual libraries of 

chemicals before these compounds are synthesized in the laboratory. This ‘in silico’ 

world of data, analysis, hypothesis, and models that reside inside a computer is 
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alternative to the ‘real’ world of synthesis and screening of compounds in the laboratory 

[54,55]. 

At present, many large pharmaceutical industries have reoriented their research 

strategies seeking to solve the problem of generation/selection of novel chemical entities 

(NCEs), one of the major bottlenecks in the drug discovery pipeline. In fact, currently 

most integration projects include efforts to integrate the data associated with NCE 

generation [56]. Alternatively, several approaches to the computer-aided molecular 

design and high-throughput in silico screening (or virtual high-throughput screening) 

have been introduced in the literature [57]. Nevertheless, novel computational methods 

and strategies are required to deliver a system that significantly reduces the time-to-

market and research and development (R&D) spendings, and increase the rate at which 

NCEs progress through the pipeline. Such studies if they are implemented successfully 

can deliver substantial benefits and act as the bedrock for NCE selection [56].  

In this context, our research group has recently introduced a novel scheme to perform 

rational –in silico- molecular design (or selection/identification of lead drug-like 

chemicals) and QSAR/QSPR studies, known as TOMOCOMD-CARDD (acronym of 

Topological MOlecular COMputer Design-Computer Aided “Rational” Drug Design) 

[58]. This method has been developed to generate 2D (topologic), 2.5 (3D-chiral) and 3D 

(topographic and geometric) molecular descriptors based on the application of the 

discrete mathematics and linear algebra theory to chemistry. In this sense, atomic, atom-

type, atom-group and total linear, bilinear and quadratic molecular fingerprints have been 

defined in analogy to the linear, bilinear and quadratic mathematical maps [59,60]. This 

in silico method has been successfully applied to the prediction of several physical, 
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physicochemical and chemical properties of organic compounds [59,61-63]. In addition, 

TOMOCOMD-CARDD has been extended to consider three-dimensional features of 

small/medium-sized molecules based on the trigonometric-3D-chirality-correction factor 

approach [64]. This strategy has also been useful for the prediction of the 

pharmacokinetic properties of organic compounds [65-67], and the selection of novel 

subsystems of compounds having a desired property/activity [68-73].  

Later, promising results have been found in the modeling of the interaction between 

drugs and HIV-1 RNA packaging region in the field of bioinformatics using the 

TOMOCOMD-CANAR (Computed-Aided Nucleic Acid Research) approach [74,75].  

Finally, an alternative formulation of our approach for structural characterization of 

proteins was carried out recently [76,77]. This extended method TOMOCOMD-CAMPS 

(Computed-Aided Modeling in Protein Science) was used to encompass protein stability 

studies by means of a combination of protein linear or quadratic indices (macromolecular 

fingerprints) and statistical (linear and nonlinear model) methods [76,77]. 

Recently, some of present authors have proposed a new extended local (bond and 

bond-type) and total (whole) molecular descriptors based on the adjacency of edges and 

based on quadratic and linear maps similar to those typically defined by mathematicians 

in linear algebra. These researchers also proposed a new matrix representation of the 

molecule on the “stochastic” adjacency of edges and quadratic (linear) indices derived 

from there. These descriptors, called bond-based quadratic (linear) indices, encode 

topological information given by the molecular graph, weighted by chemical information 

encoded in selected bond weightings. Finally, the correlation ability of the new 

descriptors is tested in a QSPR and QSAR studies [78,79].  
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The main objective of this work was to use non-stochastic and stochastic bond-type 

linear indices to generate predictive LDA (linear discriminant analysis)-assisted QSAR 

models enabling the selection of novel drug-like compounds with antitrichomonal 

activity. The in vitro evaluation of a new series of heterocyclic compounds with 

antitrichomonal activity is also presented.  

 

2. Theoretical Framework 

The basis of the extension of linear indices that will be given here is the edge-

adjacency matrix considered and explicitly defined in the chemical graph-theory 

literature [80,81], and rediscovered by Estrada as an important source of new molecular 

descriptors [82-87]. In this section, we first will define the nomenclature to be used in 

this work, then the atom-based molecular vector ( x ) will be redefined for bond 

characterization using the same approach as previously reported, and finally some new 

definition of bond-based non-stochastic and stochastic linear indices with its peculiar 

mathematical properties will be given. 

2.1. Background in Graph-Theoretical Edge-Adjacency Matrix 

Let G = (V, E) be a simple graph, with V = {v1, v2, ..., vn} and E = {e1, e2, ...em} being 

the vertex- and edge-sets of G, respectively. Then G represents a molecular graph having 

n vertices and m edge (bonds). The edge-adjacency matrix E of G (likewise called bond 

adjacency matrix, B) is a square and symmetric matrix whose elements eij are 1 if and 

only if edge i is adjacent to edge j [84,87,88]. Two edges are adjacent if they are 

incidental to a common vertex. This matrix corresponds to the vertex-adjacency matrix of 
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the associated line graph. Finally, the sum of the ith row (or column) of E is named the 

edge degree of bond i, δ(ei) [82,85,86,88]. 

2.1.1. New Edge-Relations: Stochastic Edge-Adjacency Matrix 

By using the edge (bond)-adjacency relationships we can find other new relation for a 

molecular graph that will be introduced here. The kth stochastic edge-adjacency matrix, 

ESk can be obtained directly from Ek. Here, ESk = [kesij] is a square table of order m (m = 

number of bonds) and the elements kesij are defined as follows: 

i
k

ij
k

i
kk

ij
k

ij
k

e
e

ESUM
e

es
)()( δ

==                                                                                           (1)  

where, keij are the elements of the kth power of E and the SUM of the ith row of Ek are 

named the k-order edge degree of bond i, kδ(ei). Note that the matrix ESk in Eq. 1 has the 

property that the sum of the elements in each row is 1. Such an mxm matrix with 

nonnegative entries having this property is called a “stochastic matrix” [89]. 

2.2. Chemical Information and Bond-based Molecular Vector 

The atom-based molecular vector ( x ) used to represent small-to-medium size organic 

chemicals has been explained in some detail elsewhere [60,63,68,71,73]. In a parallel 

manner to the development of x , we present the extension to the bond-based molecular 

vector ( w ). The components (wi) of w  are numeric values, which represent a certain 

standard bond property (bond-label). That is to say, these weights correspond to different 

bond properties for organic molecules. Thus, a molecule having 5, 10, 15,..., m bonds can 

be represented by means of vectors, with 5, 10, 15,..., m components, belonging to the 

spaces ,  ,  ,..., , respectively; where m is the dimension of the real sets 

( ). This approach allows us encoding organic molecules such as 2-hydroxybut-2-

5ℜ 10ℜ 15ℜ mℜ

mℜ
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enenitrile through the molecular vector w  = [wCsp3-Csp2, wCsp2=Csp2, wCsp2-Osp3, wH-Osp3, 

wCsp2-Csp, wCsp≡Nsp]. This vector belongs to the product space ℜ 6. 

These properties characterize each kind of bond (and bond-types) within the 

molecule. Diverse kinds of bond weights (wi) can be used in order to codify information 

related to each bond in the molecule. These bond labels are chemically meaningful 

numbers such as standard bond distance [55,90-92], standard bond dipole [55,90-92] or 

even mathematical expressions involving atomic weights such as atomic Log P [93], 

surface contributions of polar atoms [94], atomic molar refractivity [95], atomic hybrid 

polarizabilities [96], and Gasteiger-Marsilli atomic charge [97], atomic electronegativity 

in Pauling scale [98] and so on. Here, we characterized each bond with the following 

parameter: 

wi = xi/δi + xj/δj                                                                                                                                                                           (2)

which characterizes each bond. In this expression xi can be any standard weight of the 

atom i bonded with atom j. δi is the vertex (atom) degree of atom i. The use of each scale 

(bond property) defines alternative molecular vectors, w . 

2.3. Calculation of Linear Indices for Bonds, Bond-Types and the Whole Molecule 

If a molecule consists of m bonds (vector of ), then the kth bond linear indices for 

such a molecule, are calculated from linear maps on  (endomorphism on ℜ m) in 

canonical basis set. Specifically, the kth linear maps, 

mℜ

mℜ

)w(f k and )w(f k
s , are computed 

from the kth non-stochastic and stochastic edge-adjacency matrices, Ek and ESk, as shown 

in Eqs. 3 and 4, respectively: 

wE]we[ )w(f k
m

j

j
ij

k
k == ∑

=1
                                                                                 (3)  
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wES]wes[ )w(f k
m

j

j
ij

k
k

s == ∑
=1

                                                                                 (4)                                

where m is the number of bonds of the molecule and wj are the coordinates of the bond-

based molecular vector ( w ) in the so-called canonical (‘natural’) basis. In this basis 

system, the coordinates of any vector w  coincide with the components of this vector 

[89,99,100]. For that reason, those coordinates can be considered as weights (bond-

labels) of the edge of the molecular graph. The coefficients keij and kesij are the elements 

of the kth power of the matrix E(G) and ES(G), correspondingly, of the molecular graph. 

The defining equations (3) and (4) for )w(fk  and )w(fk
s , respectively, may be also 

written as the single matrix equation (see Eqs. 3 and 4), where w  is a column vector (an 

mx1 matrix) of the coordinates of w  in the canonical basis of . Here, Ek and ESk 

denote the matrices of linear maps with respect to the natural basis set. 

mℜ

Note that both linear maps are defined as a linear transformation )w(fk  on molecular 

vector space . This map is a correspondence that assigns a vector mℜ )w(f  to a vector w  

in in such a way that: mℜ

)w(f)w(f)ww(f 22112211 λλλλ +=+                                                                                 (5) 

for any scalar 1λ , 2λ and any vector 1w , 2w  in .  mℜ

Total (whole-molecule) bond-based non-stochastic and stochastic linear indices, 

)w(fk  and )w(fk
s , are calculated from local (bond) linear indices as shown in Eqs. 6 and 

7, correspondingly: 

∑∑∑∑
== ==

===
m

i

kt
i

m

i

m

j

j
ij

k
m

i
kik wEuwe)w(f)w(f

11 11
                                                   (6)  
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11 11

                                                   (7)  

where m is the number of bonds, )w(fki  and )w(f ki
s  are the local non-stochastic and 

stochastic linear indices obtained by Eqs. 3 and 4 as the coordinates of  )w(fk  and )w(fk
s  

referred to the canonical basis, respectively. It means, whenever we calculate total bond-

based non-stochastic and stochastic linear indices in fact we are calculating the 1-norm 

associated to the linear maps ( )w(fk  and )w(fk
s ) well known and defined in 

mathematical analysis for such vector spaces as [99]. Then, both total linear forms, mℜ

)w(fk  and )w(fk
s , can also be written in matrix form for each molecular vector mw ℜ∈ , 

where t
iu  is an m-dimensional unitary row vector (see Eqs. 3 and 4). As it can be seen, 

the kth total linear indices (both non-stochastic and stochastic) are calculated by summing 

the local (bond) linear indices of all bonds in the molecule. 

Finally, in addition to total and bond linear indices computed for each bond in the 

molecule, local-fragment (bond-type) formalism can be developed. The kth bond-type 

linear index of the edge-adjacency matrix is calculated by summing up the kth bond linear 

indices of all bonds of the same bond type in the molecule. That is to say, this extension 

of the bond linear index is similar to the group additive schemes, in which an index 

appears for each bond type in the molecule together with its contribution based on the 

bond linear index. Consequently, if a molecule is partitioned into Z molecular fragments, 

the total non-stochastic (or stochastic) linear indices can be partitioned into Z local non-

stochastic (or stochastic) linear indices )w(f kL  (or )w(f ikL
s ), L = 1, …, Z. That is to say, 
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the total (both non-stochastic and stochastic) linear indices of order k can be expressed as 

the sum of the local linear indices of the Z fragments of the same order: 

∑
=

=
Z

L
kLk )w(f)w(f

1
                                                                                                      (8) 

∑
=

=
Z

L
kL

s
k

s )w(f)w(f
1

                                                                                                      (9)  

 
In the bond-type linear indices formalism, each bond in the molecule is classified into 

a bond-type (fragment). In this sense, bonds may be classified into bond types in terms of 

the characteristics of the two atoms that define the bond. For all data sets, including those 

with a common molecular scaffold as well as those with very diverse structure, the kth 

fragment (bond-type) linear indices provide much useful information. Thus, the 

development of the bond-type linear indices description provides the basis for application 

to a wider range of biological problems in which the local formalism is applicable 

without the need for superposition of a closely related set of structures. 

It is useful to perform a calculation on a molecule to illustrate the steps in the 

procedure. For this, in the next section the calculus of the non-stochastic and stochastic 

linear indices of the bond matrix (both total and local) using a simple chemical example 

is depicted. In that section, it will also stand out that our approach is rather similar to the 

LCBO-MO (Linear Combination of Bond Orbitals-Molecular Orbitals) method (e.g., for 

k = 1)[101]. LCBO-MO is another way of forming molecular orbitals by taking linear 

combinations of functions associated with the different bonds in the molecule. In this 

sense, MOs are made up as LCBO of bonds composing the system, i.e. are written in the 

form, 

 13



j

n

j
iji c ψϕ ∑

=

=
1

                                                                                                                 (10)    

where i is the number of the MO, ϕ  (in our case, )w(f i ); j are the numbers of bond ψ–

orbitals (in our case, ); cjw ij (in our case, 1eij or 1esij for non-stochastic and stochastic 

indices, respectively) are  the numerical coefficients defining the contributions of 

individuals BOs to the given MO. Although the LCAO (Linear Combination of Atom 

Orbitals) approximation has been particularly useful for the study of conjugated 

hydrocarbons, the LCBO method has been particularly applied to the calculation of 

properties of saturated hydrocarbons. As a saturated molecule can be considered as made 

up of localized bonds, it is reasonable to associate an orbital to each of the corresponding 

regions [101].  

2.4. Sample Calculation  

The linear indices of the bond matrix are calculated in the following way. 

Considering the molecule of 2-hydroxybut-2-enenitrile as a simple example, we have the 

following labeled molecular graph and bond-based adjacency matrices (E and ES). The 

second (k = 2) and third (k = 3) power of these matrices and bond-based molecular 

vector, w  are also given: 

N
HO

1
2 3

5

4
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The molecule contains five localized bonds (Corresponding to five edges in the H-

suppressed molecular graph). To these we will associate the five “bond orbitals” w1, w2, 

w3, w4, and w5. Thus, w  = [w1, w2, w3, w4, w5] = [w(C-C), w(C=C), w(C-C), w(C≡N), w(C-O)] and 

each “bond orbital” can be computed by Eq. 2 using, for instance, the atomic 

electronegativity in Pauling scale (xi) [98] as atomic weight (atom-label): 

w1 = xC /1 + xC /3 = 2.55/1 + 2.55/3 = 3.4 

w2 = xC /3 + xC /4 = 2.55/3 + 2.55/4 = 1.4875 

w3 = xC /4 + xC /4 = 2.55/4 + 2.55/4 = 1.275 

w4 = xC /4 + xN /3 = 2.55/4 + 3.04/3 = 1.650833 

w5 = xC /4 + xO /1 = 2.55/4 + 3.44/1 = 4.0775 

and therefore, w  = [3.4, 1.4875, 1.275, 1.650833, 4.0775] 

Each non-stochastic and stochastic “molecular orbital” will have the form: 

fki( w ) = kei1w1
 + kei2w2

 + kei3w3
 + kei4w4

 + kei5w5
                                                                                              (11) 

sfki( w ) = kesi1w1
 + kesi2w2

 + kesi3w3
 + kesi4w4

 + kesi5w5
                                                                                 (12)

The keii’s and kesii’s can be considered as a measure of the attraction of an electron for 

a bond in the k step. The keij’s and kesij’s are the terms of interaction between two bonds 
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in the k-step. The keij = keji are equal by symmetry (non-oriented molecular graph). 

However, kesij’s ≠ kesji’s. This is a logical result because the kth  esij elements are the 

transition probabilities with the ‘electrons’ moving from bond i to j at the discrete time 

periods tk and it should be different in both senses. This result is in total agreement if the 

electronegativity of the two atom types in the bonds are taken into account. 

In this way, Ek and ESk can be seen as graph–theoretic electronic–structure 

models[102]. In fact, quantum chemistry starts from the fact that a molecule is made up 

of electrons and nuclei. The distinction here between bonded and non-bonded atoms is 

difficult to justify. Any two nuclei of a molecule interact directly and indirectly through 

the electrons present in the molecule. Only the intensity of this interaction varies on 

going from one pair of nuclei to another. In this sense, the electron in an arbitrary bond i 

can move (step-by-step) to other bonds at different discrete time periods tk (k = 0, 1, 2, 

3,…) through the chemical-bonding network. That is to say, the E1 and ES1 matrices 

consider the valence-bond electrons in one step and their power (k = 0, 1, 2, 3…) can be 

considering as an interacting–electron chemical–network model in k step. This model can 

be seen as an intermediate between the quantitative quantum-mechanical Schrödinger 

equation and classical chemical bonding ideas [102].  

On the other hand, the kth (k = 0-3) non-stochastic bond linear indices can be 

calculated for this molecule as follows: 
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and stochastic linear indices for each bond i can be computed for this molecule in a 

similar form: 
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The total non-stochastic linear indices can be expressed as the sum of the local (bond) 

linear indices for this molecule as follows:  
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                                          = 3.4 +1.4875 +1.275 +1.650833 +4.0775 = 11.89083 
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                                          = 11.46583 +37.51083 +34.65 +12.79 +24.25583 = 120.6725                                  

The terms in the summations for calculating the total linear indices are the so-called 

bond linear indices. We have written these terms in the consecutive order of the bond 

labels in the graph. For instance, the non-stochastic bond linear indices of order 0, 1, 2 

and 3 for the bond labeled as 1 are 3.4, 1.4875, 8.7525, and 11.46583, respectively. 

The kth total stochastic linear indices values are also the sum of the kth local (bond) 

stochastic linear indices values for all bonds in the molecule: 
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3. Methods 

3.1. TOMOCOMD-CARDD Approach  
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TOMOCOMD is an interactive program for molecular design and bioinformatic 

research [58]. It is composed of four subprograms; each one of them allows drawing the 

structures (drawing mode) and calculating molecular 2D/3D (calculation mode) 

descriptors. The modules are named CARDD (Computed-Aided ‘Rational’ Drug 

Design), CAMPS (Computed-Aided Modeling in Protein Science), CANAR (Computed-

Aided Nucleic Acid Research) and CABPD (Computed-Aided Bio-Polymers Docking). 

In the present report, we outline salient features concerned with only one of these 

subprograms, CARDD and with the calculation of non-stochastic and stochastic 2D 

bond-based linear indices.  

3.1.1. Computational Strategies 

The main steps for the application of present method in QSAR/QSPR and drug design 

can be briefly summarized in the following set of steps: 1) Draw the molecular 

pseudographs for each molecule of the data set, using the software drawing mode. This 

procedure is performed by a selection of the active atomic symbol belonging to the 

different groups in the periodic table of the elements, 2) Use appropriated atomic 

properties in order to weight and differentiate the molecular bonds. In this study, the 

properties used are those previously proposed for the calculation of the DRAGON 

descriptors [98,103,104] i.e., atomic mass (M), atomic polarizability (P), atomic 

Mullinken electronegativity (K), van der Waals atomic volume (V), plus the atomic 

electronegativity in Pauling scale (G) [105].The values of these atomic labels are shown 

in Table 1.  In order to calculate the required weights, we used the mathematical 

expression given by Eq. 2, which involve atomic weights, 3) Compute the total and local 

(bond and bond-type) non-stochastic and stochastic linear indices. It can be carried out in 
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the software calculation mode, where you can previously select the atomic properties and 

the descriptor family to calculate the molecular indices. This software generates a table in 

which the rows correspond to the compounds, and columns correspond to the total and 

local bond-based linear indices or other molecular descriptors family implemented in this 

program, 4) Find a QSPR/QSAR equation by using several multivariate analytical 

techniques, such as multilinear regression analysis (MRA), neural networks (NN), linear 

discrimination analysis (LDA), and so on. That is to say, we can find a quantitative 

relation between an activity A and the linear indices having, for instance, the following 

appearance, A = a0f0( w ) + a1f1( w ) + a2f2( w ) +….+ akfk( w ) + c, where A is the 

measured activity, fk( w ) are the kth total bond-based linear indices, and the ak’s are the 

coefficients obtained by the linear regression analysis, 5) Test the robustness and 

predictive power of the QSPR/QSAR equation by using internal (cross-validation) and 

external (using a test set and an external predicting set) validation techniques, and 6) 

Apply the obtained LDA-based QSAR models as cheminformatic tool for identifying 

and/or discovering novel drugs through the ligand-based virtual screening procedure. 

The bond–based TOMOCOMD-CARDD descriptors computed in this study were the 

following: 

1)   kth ( )15,0=k  total non-stochastic bond-based linear indices not considering 

and considering H-atoms in the molecular graph (G) [fk( w ) and fk
H( w ), 

respectively]. 

2) kth ( )15,0=k  total stochastic bond-based linear indices not considering and 

considering H-atoms in the molecular graph (G) [sfk( w ) and sfk
H( w ), respectively]. 
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3)   kth ( )15,0=k  bond-type (group = heteroatoms: S, N, O) non-stochastic linear 

indices not considering and considering H-atoms in the molecular graph (G) [fkL( w E) 

and fkL
H( w E), correspondingly]. These local descriptors are putative molecular 

charge, dipole moment, and H-bonding acceptors.  

4)   kth ( )15,0=k  bond-type (group = heteroatoms: S, N, O) stochastic linear 

indices not considering and considering H-atoms in the molecular graph (G) 

[sfkL( w E), and sfkL
H( w E), correspondingly]. These local descriptors are putative 

molecular charge, dipole moment, and H-bonding acceptors. 

Table 1. Values of the Atom Weights Used for Linear Indices Calculation. 
ID Atomic 

Mass 
VdW                   

Volume 
Mulliken 

Electronegativity 
Polarizability Pauling 

Electronegativity 
H 1.01 6.709 2.592 0.667 2.2 
B 10.81 17.875 2.275 3.030 2.04 
C 12.01 22.449 2.746 1.760 2.55 
N 14.01 15.599 3.194 1.100 3.04 
O 16.00 11.494 3.654 0.802 3.44 
F 19.00 9.203 4.000 0.557 3.98 
Al 26.98 36.511 1.714 6.800 1.61 
Si 28.09 31.976 2.138 5.380 1.9 
P 30.97 26.522 2.515 3.630 2.19 
S 32.07 24.429 2.957 2.900 2.58 
Cl 35.45 23.228 3.475 2.180 3.16 
Fe 55.85 41.052 2.000 8.400 1.83 
Co 58.93 35.041 2.000 7.500 1.88 
Ni 58.69 17.157 2.000 6.800 1.91 
Cu 63.55 11.494 2.033 6.100 1.9 
Zn 65.39 38.351 2.223 7.100 1.65 
Br 79.90 31.059 3.219 3.050 2.96 
Sn 118.71 45.830 2.298 7.700 1.96 
I 126.90 38.792 2.778 5.350 2.66 

 
 
 
3.2.Data Set for QSAR Study 

In order to obtain mathematical expressions capable of discriminating between active 

and inactive compounds, the chemical information contained in a great number of 
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compounds with and without the desired biological activity must be statistically 

processed. Taking into account that the most critical aspect in the construction of a 

training data set is the molecular diversity of the included compounds, we selected a 

group of 123 organic chemicals having as much structural variability as possible. The 50 

antitrichomonals considered in this study are representative of families with diverse 

structural patterns and action modes. Figure 1 shows a representative sample of such 

active compounds. On the other hand, 73 compounds having different clinical uses were 

selected for the set of inactive compounds, through a random selection, guaranteeing also 

a great structural variability. All these chemicals were taken from the Negwer Handbook 

[106], and Merck Index [107], where their names, synonyms and structural formulas can 

be found. 

From these 123 chemicals, 91 were chosen at random to form the training set, being 

40 of them active and 51 inactive ones. The great structural variability of the selected 

training data set makes possible the discovery of lead compounds, not only with 

determined mechanisms of antitrichomonal activity, but also with novel modes of action 

(which will be illustrated well in this paper in a virtual experiment for lead compounds 

generation) The remaining subseries consisting of 10 trichomonacidals and 22 non- 

trichomonacidals were prepared as test sets for the external validation of the models (32 

chemicals). These compounds were never used in the development of the classification 

models. 
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Figure 1. Random sample of the molecular families of trichomonacidal agents studied 

here. 
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3.2.1. Statistical Analysis 

The discriminant functions were obtained by using the Linear Discriminant Analysis 

(LDA) [108] as implemented in the STATISTICA [109]. The default parameters of this 

program were used in the development of the model. Forward stepwise was fixed as the 

strategy for variable selection. The principle of parsimony (Occam's razor) was taken into 

account as they strategy for model selection. In its original form, the Occam’s razor states 

that »Numquam ponenda est pluritas sin necesitate«, which can be translated as »Entities 

should not be multiplied beyond necessity« [110]. In this case, simplicity is loosely 

equated with the number of parameters in the model. If we understand the predictive 

error to be the error rate for unseen examples, the Occam’s razor can be stated for the 

selection of QSAR/QSPR models as (“QSAR/QSPR Occam’s Razor”): Given two 

QSAR/QSPR models with the same predictive error, the simplest one should be preferred 

because simplicity is desirable in itself [110]. In this connection, we select the model with 

higher statistical signification but having as few parameters (ak) as possible.  

The quality of the models were determined by examining Wilks’ λ parameter (U-

statistic), squared Mahalanobis distance (D2), Fisher ratio (F) and the corresponding p-

level (p(F)) as well as the percentage of good classification in the training and test sets 

[108]. Models with a proportion between the number of cases and variables in the 

equation lower than 5 were rejected.  

The Wilks’ λ for the overall discrimination can take values in the range of 0 (perfect 

discrimination) to 1 (no discrimination). The D2 statistics indicates the separation of the 

respective groups, showing whether the model possesses an appropriate discriminatory 

power for differentiating between the two respective groups. 
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By using the models, one compound can then be classified as either active, if ∆P% > 

0, being ∆P% = [P(Active) - P(Inactive)]x100 or inactive otherwise. P(Active) and 

P(Inactive) are the probabilities with which the equations classify a compound as active 

and inactive, respectively.  

The statistical robustness and predictive power of the obtained model were assessed 

using a prediction (test) set [111]. Also a leave-group-out (LGO) cross-validation strategy 

was carried out. In this case, 10% of the data set was used as group size, i.e. groups 

including 10% of the training data set were left out and predicted by the model based on 

the remaining 90%. This process was carried out 10 times on 10 unique subsets. In this 

way, every observation was predicted once (in its group of left-out observations). The 

overall mean for this process (10% full leave-out cross-validation) was used as a good 

indication of robustness, stability and predictive powers of the obtained models [111]. 

Finally, the calculation of percentages of global good classification (accuracy), 

sensibility, specificity (also known as ‘hit rate’), false positive rate (also known as ‘false 

alarm rate’) and Matthews’ correlation coefficient (C ) in the training and test 

(predicting) sets permitted the assessment of the model [112].  

3.3. Biological Assay: Determination of in vitro Trichomonacidal Activity 

The biological activity was assayed on Tv JH31A #4 Ref. No. 30326 (ATCC, MD, 

USA) in modified Diamond medium supplemented with equine serum and grown at 37 

˚C (5% CO2). The compounds were added to the cultures at several concentrations (100, 

10, and 1 µg/ml) after 6 h of the seeding (0 h). Viable protozoa were assessed at 24 and 

48 h after incubation at 37 ˚C by using the Neubauer chamber. MTZ (Sigma-Aldrich SA, 

Spain) was used as reference drug at concentrations of 2, 1, 0.5 µg/ml. Cytocidal and 
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cytostatic activities were determined by calculation of percentages of cytocidal (%C) and 

cytostatic activities (%CA), in relation to controls as previously reported [113,114].  

 

4. Results and Discussion 

4.1. Development and Validation of the Discriminant Functions 

Although the number of existing statistical methods to get classification functions is 

relatively extensive, we select linear discriminant analysis (LDA) given the simplicity of 

the method [108]. The use of LDA in rational drug design has been extensively reported 

by different authors [55,62-64,66-74]. Therefore, LDA was also the technique used in the 

generation of discriminant functions in the current work. Making use of the LDA 

technique implemented in the STATISTICA software [109], the following linear models 

were obtained; in which total as well as local non-stochastic and stochastic bond-based 

linear indices were used as independent variables:                                                                 

 
Class = -5,53 -2,96x10-5 Mf6L

H( w E) -0,07 Mf0L
H( w E) -0,05Mf0L( w E) 

              -5,29x10-4 Pf7L( w E) +4,73x10-5 Vf7L( w E) +0,36 Ef0L
H( w E)                             (13) 

                N = 91         λ = 0,46          D2 = 4,54        F(6,84) = 15,99       p<0,0000 

Class = -4,93 -0,12Msf9L
H ( w E) +0,10 Vsf0L

H( w E) +1,20Esf2L
H( w E) -0,77Esf5L( w E)     (14)  

         N = 91         λ = 0,48          D2 = 4,28         F(6,84) = 123,18     p<0,0000 

where N is the number of compounds, λ is Wilks’ statistics, D2 is the square of the 

Mahalanobis distance, F is the Fisher ratio and p is the significance level. 

Model 13 classifies correctly 87.50 % of active and 90.20% of inactive compounds in 

the training set for a global good classification (accuracy) of 89.01%. Model 14 classifies 

correctly 82.42% of the compounds in training set. Specifically, the model correctly 
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classifies 33 out of 40 (82.50%) trichomonacidal compounds and 42 out of 51 (82.35%) 

inactive chemicals in the training series. On the other hand, Eqs. 13 and 14 show an 

87.50% (30/32) and 84.38% (27/32) of global predictability in the prediction series, 

respectively. These results validate the models for use in the ligand-based virtual 

screening taking into consideration that 85.0% is considered as an acceptable threshold 

limit for this kind of analysis [115]. 

In Tables 2 and 3 we give the names of all compounds in the training and test active 

and inactive sets together with their posterior probabilities calculated from the 

Mahalanobis distance using both equations. The same information of all compounds in 

the training and test inactive set appears in Table 4 which summarizes the results of the 

classifications for both models in the training and test groups.  

A more serious analysis was carried out by calculating most of the parameters 

commonly used in medical statistics (accuracy, sensitivity, specificity and false positive 

rate) and the Matthews correlation coefficient (C). Table 4 also lists these parameters for 

both obtained models  [112,116]. While the sensitivity is the probability of correctly 

predicting a positive example, the specificity is the probability that a positive prediction 

is correct. On the other hand, C quantifies the strength of the linear relation between the 

molecular descriptors and the classifications, and it may often provide a much more 

balanced evaluation of the prediction than, for instance, the percentages [112,116]. The 

obtained models, Eqs. 13 and 14, showed a high C of 0.78 (0.71) and 0.65 (0.65) in 

training (test) sets, correspondingly.  
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Table 2. Names and classification of active compounds in training and test series 
according to the two TOMOCOMD-CARDD models developed in this work. 
Name ∆P%a ∆P%b Name ∆P%a ∆P%b 

Active training set 
Anisomycin -90.67 -68.54 Abunidazole 73.86 83.90 
Virustomycin A 98.26 99.72 Imoctetrazoline 63.30 93.47 
Azanidazole 96.39 94.97 Forminitrazole 80.64 45.86 
Carnidazole 93.99 90.28 Chlomizol 85.64 84.98 
Propenidazole 98.57 94.48 Acinitrazole 80.64 71.72 
Lauroguadine -43.58 58.70 Moxnidazole 99.81 97.26 
Mepartricin A 82.28 91.89 Isometronidazole 45.23 46.05 
Metronidazole 50.39 42.97 Mertronidazole phosphate 73.62 67.93 
Nifuratel 98.23 96.99 Benzoylmetronidazole 93.98 92.71 
Nifuroxime 66.68 60.69 Bamnidazole 94.34 82.87 
Nimorazole 51.98 -20.24 Glycarsiamidon -51.91 -50.87 
Secnidazole 46.88 46.04 Fexinidazole 95.09 82.59 
Cariolin 50.23 -20.26 Piperanitrozole 79.08 87.64 
2 -Amino -5 -nitrotiazola 30.56 -42.27 Gynotabs 68.15 81.93 
Glycobiarzol 58.90 35.45 Pirinidazole 93.22 93.15 
Clioquinol 38.35 -21.20 Metronidazole hydrogen succinate 98.18 90.43 
Diiodohydroxy 
quinoline 60.86 -73.55 Tolamizol 81.98 90.04 

Ornidazol 88.14 85.11 Thiacetarsamide 32.50 2.59 
Trichomonacid 77.09 68.11 Tivanidazole 98.42 99.58 
Lutenurine -86.14 71.53 Policresulen -50.52 31.32 

Active test set 
Acertarsone -28.77 -22.46 Pentamycin -97.52 -66.85 
Furazolidone 98.27 96.87 Azomycin 12.44 11.91 
Mepartricin B 76.62 92.54 Ternidazole 50.88 53.30 
Aminitrozole 80.64 71.72 Misonidazole 61.56 29.13 
Clotrimazol 14.60 39.75 Satranidazole 97.86 97.50 
a,bAntitrichomonal  activity predicted by Eqs 13 and 14, respectively: ∆P% = [P(Active) - P(Inactive)]x100. 
 
 
Table 3. Names and classification of inactive compounds in training and test series 
according to the two TOMOCOMD-CARDD models developed in this work. 
Name ∆P%a ∆P%b Name ∆P%a ∆P%b 

Inactive training set 
Amantadine -99.63 -96.58 Nonaferone -89.35 -91.95 
Thiacetazone -42.85 -50.91 Rolipram -69.90 -74.67 
Cloral betaine -96.14 -98.86 N-hydroxymethyl-N-methylurea -95.44 -96.97 
Carbavin -80.39 -82.77 4 chlorobenzoic acid -71.36 -6.54 
Norantoin -70.13 -36.88 Acetanilide -95.13 -91.81 
Orotonsan Fe -3.32 51.99 Guanazole -99.82 -98.67 
Picosulfate 78.57 0.89 Tetramin -99.37 -99.09 
Naftazone -59.18 -35.79 Mecysteine -97.80 -98.27 
Besunide -65.47 22.10 Cirazoline -90.59 -91.89 
Acetazolamide -48.00 -45.29 Methocarbamol -10.45 -83.39 
Propamine''soviet -99.72 -99.19 Lysergide -89.11 -73.32 
RMI 11894 -98.27 -94.42 Dopamine -98.24 -81.00 

 28



Ag 307 -52.03 -78.33 Bufeniode -19.12 -18.70 
Barbismethylii iodide -10.56 -98.62 Celiprolol -21.41 -41.31 
Pancuronium bromide -83.53 -97.69 Erysimin 12.24 39.02 
Vinyl ether -94.55 -98.59 Peruvoside 8.24 -7.89 
Basedol -48.72 11.14 Amitraz -67.45 -74.39 
Carbimazole 46.85 55.40 Proclonol -42.09 59.74 
Didym levulinate -91.58 -95.22 Asame -90.29 -95.41 
Perchloroethane -96.30 -82.82 KC-8973 -82.47 -81.26 
Pyrantel tartrate -80.54 -82.55 Ethydine 64.58 36.30 
Fentanyl -93.52 -94.42 Magnesii metioglicas -46.45 -97.37 
Petidina -87.83 -91.89 Alibendol -71.94 -37.14 
Tenalidine tartrate -99.78 -98.92 Diponium Bromide -96.50 -97.93 
Bamipine -98.72 -98.82 Streptomycin -90.64 69.92 
Colestipol -99.71 -99.76    

Inactive test set 
Citenazone -19.35 -28.82 Metriponate -99.97 -95.87 
Methenamine -99.66 -99.43 Ciclopramine -97.18 -87.45 
Penthrichloral -90.52 25.87 Litracen -99.31 -98.95 
Calcium Sodium ferriclate -100.00 -100.00 Trimetilsulfonium hidroxide -99.48 -99.97 
Ferroceron -99.06 -95.58 Norgamem -98.23 -94.55 
Emodin -89.49 -94.53 Emylcamate 5.07 21.19 
Butanolum -98.18 -99.67 Acetylcholine -96.79 -99.97 
Spironolactone -99.70 -99.91 Carazolol -94.86 -86.37 
Bromcholine -57.67 -99.43 Cefazolin -14.78 -82.60 
Imekhin 68.54 -31.90 Penicillin I -91.40 42.04 
Diphenadione -85.12 -85.68 Aziromycin -90.04 -82.75 
a,bAntitrichomonal  activity predicted by Eqs  13 and 14, respectively: ∆P% = [P(Active) -P(Inactive)]x100.  

 
 
Table 4. Prediction performances for two LDA-based QSAR models (using non-
stochastic and stochastic bond-type linear indices) in the training and test sets. 

 Matthews’ Corr.  
Coefficient (C) 

Accuracy  ‘QTotal’ (%) 
 

Sensitivity 
‘hit rate’ (%) (%) 

Specificity 
(%) 

 False positive rate 
‘false alarm rate’ (%) 

Non-Stochastic Bond-Type Linear Indices (Eq. 13)   
Training set 0.78 89.01 87.50 87.50 9.80 
Predicting set 0.71 87.50 80.00 80.00 9.09 
Stochastic Bond-Type Linear Indices (Eq. 14)   
Training set 0.65 82.42 82.50 78.57 17.65 
Predicting set 0.65 84.38 80.00 72.73 13.64 

 
 
4.1.1. Internal Validation of the Descriminant Functions. Cross-Validation Methods 

In recent years, exhaustive validation of mathematical models constitutes a main key 

of current QSAR theory [111]. In this sense, internal validation methods (e.g., cross-

validation) are considered by many authors as an indicator or even as the ultimate proof 
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of the stability and high-predictive power of a QSAR model. However, Golbraikh and 

Tropsha demonstrated that high values of leave-one-out square correlation coefficient q2 

appear to be a necessary, but not the sufficient, condition for the model to have a high 

predictive power [117]. A more exhaustive cross-validation method can be used in which 

a fraction of the data (10–20%) is left out and predicted from a model based on the 

remaining data. This process (leave-group-out, LGO) is repeated until each observation 

has been left out at least once [117,118].  

In this report, we carried out a leave-10-fold full-out (LGO) cross-validation procedure. 

For each group of observations left out (10% of the whole data set, 9 compounds), a 

model was developed from the remaining 90% of the data (81 compounds). This process 

was carried out ten times on ten unique subsets. The statistical results are depicted in 

Table 5. The overall mean of the correct classification in training (test) set for this 

process for Eq. 13 and 14 was 88.90% (87.86%) and 82.20% (80.19%), correspondingly. 

The result of predictions on the 10% full cross-validation test evidenced the quality 

(robustness, stability and predictive power) of the obtained models.  

Table 5. Results of the 10-fold full cross-validation procedure. 
Groups 

 
Q%a λ D2 F Q%b Q%a λ D2 F Q%b 

Eq. 13 (Non-Stochastic Bond-based Linear Indices) Eq. 14 (Stochastic Bond-based Linear Indices)
1 88.89 0.45 4.92 15.35 80.00 85.19 0.46 4.73 22.74 70.00 
2 89.02 0.48 4.38 13.81 77.78 82.93 0.49 4.19 20.34 77.78 
3 87.80 0.49 4.16 13.14 100.00 82.93 0.49 4.18 20.30 77.78 
4 87.80 0.48 4.35 13.73 88.89 80.49 0.49 4.10 19.94 88.89 
5 87.80 0.49 4.16 13.14 100.00 81.71 0.50 4.03 19.56 77.78 
6 89.02 0.46 4.68 14.77 88.89 81.71 0.47 4.39 21.34 77.78 
7 90.24 0.43 5.20 16.39 88.89 81.71 0.49 4.16 20.20 77.78 
8 90.24 0.44 5.13 16.19 77.78 80.49 0.48 4.25 20.66 88.89 
9 89.02 0.46 4.59 14.47 88.89 82.93 0.48 4.22 20.52 77.78 
10 89.16 0.46 4.65 14.93 87.50 81.93 0.46 4.63 22.86 87.50 
Mean 88.90 0.46 4.62 14.59 87.86 82.20 0.48 4.29 20.85 80.19 
SD 0.90 0.02 0.37 1.16 7.92 1.38 0.01 0.23 1.13 6.18 

a, bGlobal good classification from both models in training (90% of the data) and test (10% of the data) sets, respectively. 
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The former model validation process is important, if we take into consideration that 

the predictive ability of a QSAR model can be estimated using only an external test set of 

compounds that were not used for building the model [111,117,118]. 

3.1.1. Identification of Reported Chemicals Through a Simulated Ligand-Based 

Virtual Screening Experiment 

In this approach, instead of essaying a large number of chemicals in a series of 

biological tests we ‘virtually essay’ these compounds by evaluating their activities by the 

models developed to this effect; this process is known today as computational (virtual or 

in silico) screening [57,119,120]. Virtual screening techniques may be classified 

according to their particular modeling of molecular recognition and the type of algorithm 

used in database searching [56,57,119]. If the target (or at least its active site) 3D 

structure is known, one of the structure-based virtual screening methods can be applied. 

By contrast, ligand-based methods are founded on the principle of similarity, that is, 

similar compounds are assumed to produce similar effects.  Nevertheless, the absence of 

a receptor 3D structure is the main reason for the application of ligand-based methods 

[55,121,122]. Due to these last fundamental facts, ligand-based virtual screening 

becomes our work philosophy. 

In order to prove the possibilities of the TOMOCOMD-CARDD approach for the 

ligand-based virtual screening of antitrichomonal compounds, we have selected a series 

of 12 compounds whose activities against Tv have been already proved by several 

researchers [114,123,124]. They all were evaluated with models 13 and 14 as 

active/inactive ones. Its structures as well as the results of the classification are shown in 

Table 6. 
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Table 6. Identification of chemicals extracted from literature as active or inactive toward 
the antitrichomonal activity by using LDA-based QSAR models in a simulated ligand-
based virtual screening experiment. 
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Comp.a Ref.b ∆P%c ∆P%d Antitrichomonal  Activity 
1 -22.12 72.87 inactive 
2 -23.35 76.98 inactive 
3 

Gavini et. al. 2000 

-21.91 41.24 inactive 
4 79.96 98.60 100 µg/ml = 100e 

10 µg/ml = (100)f 
1 µg/ml = (100) f 

5 47.53 94.28 100 µg/ml = 100e 

10 µg/ml = (100)f 
1 µg/ml = (77) f 

6 56.49 96.15 100 µg/ml = 100e 

10 µg/ml = (100)f 
1 µg/ml = (73) f 

7 84.64 96.83 100 µg/ml = 100e 

10 µg/ml = (13)f 
1 µg/ml = (66) f 

8 -90.77 3.29 100 µg/ml = 100e 

10 µg/ml = (67)f 
1 µg/ml = (93) f 

9 

Ochoa et. al. 1999 

-79.79 78.68 100 µg/ml = 100e 

10 µg/ml = (74)f 
1 µg/ml = (94) f 

10 -78.68 -25.29 100 µg/ml = (58.3)f 

10 µg/ml = (29.1)f 
1 µg/ml = (18.1) f 

11 -78.87 -35.17 100 µg/ml = (66.7)f 

10 µg/ml = (33.9)f 
1 µg/ml = (25.2)f 

12 

Kouznetsov et. al. 2004 

-77.55 -25.34 100 µg/ml = (65.4)f 

10 µg/ml = (56.7)f 
1 µg/ml = (40.1) f 
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aThe molecular structures of the compounds represented with numbers are shown at the top of this table. bBibliographical references 
from where molecules together with its in vitro activities were taken. c,dAntitrichomonal activity predicted by Eq 13 and Eq 14; ∆P% = 
[P(Active) - P(Inactive)]x100. ePercentage of reduction of Tv or cytocidal activity at the indicated doses at 24h. fSpecific activity 
against Tv (in brackets) expressed as percentages of growth inhibition or cytostatic activity at 24h. 
 
 

As can be seen, both models classify correctly most of the 12 selected compounds. 

The first model (Eq. 13) classifies only two compounds incorrectly (both as false 

negative) thus achieving 83.33% of correct classification, while the second model (Eq. 

14) classifies three compounds incorrectly (all of them as false positive) for yielding 

75.00% of correct classification. This result is a more important criterion for the 

validation of the models developed here since they have been able to detect series of 

compounds from literature as active/inactive and these chemicals have shown, in general 

terms, the predicted activity.  

The next step in this approach would be the inclusion of these ‘novel’ compounds in 

the training set and the development of a new discrimination model. This new model can 

be significantly different from the previous one, due to the inclusion of a new structural 

pattern, but it should be able to recognize a greater number of such compounds as 

trichomonacidals. By these ways, the derivation of the classifier model is considered as 

an iterative process, in which novel compounds with novel structural features are 

incorporated into the training set for improving the quality of the models so developed. 

Since tests above simulated the situation of virtual screening, the particular ability to 

select compounds from a never used dataset demonstrates the effectiveness of this 

approach for the computational high throughput virtual or/and in silico screening of 

trichomonacidal agents. No previous reports related to the application of pattern 

recognition techniques to the selection of trichomonacidal compounds from a 

heterogeneous series of compounds were found in the literature. Therefore, the present 
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algorithm constitutes a step forward in the search of efficient ways to discover new drugs 

bioactive against Tv. 

4.2.  Discovery of Novel Antitrichomonal Compounds via Ligand-Based Virtual 

Screening LDA-Assisted Models as a Rational Search Procedure. Experimental ‘in 

vitro’ Corroboration. 

The massive cost involved in the development of new drugs, together with the low 

effectiveness of traditional assays in drug discovery highlights the need for a ‘sea change’ 

in the drug-discovery paradigm. Predictive in silico models could be used for the desired-

property identification, accelerating the selection process of leads and predicting their 

modes of action [120]. One of the most important features of any QSAR model is its 

ability to predict the desired property for new compounds from databases of chemicals 

[54]. Computational in silico screening of large databases considering the use of such 

models has emerged as an interesting alternative to high-throughput screening (HTS) and 

an important drug-discovery tool [125,126] 

In order to test the potential of TOMOCOMD-CARDD method and LDA for 

detecting novel antiprotozoan compounds, we predicted the biological activity of all the 

chemicals contained in our ‘in-house’ collection of quinoxaline derivatives which were 

provided by one of our synthesis research teams from IQM, CSIC, Spain [127]. The 

structures of these compounds are depicted in Figure 2. 

 All these compounds were initially screened (evaluated) with the QSAR models 13 

and 14 and then they were assayed in vitro, in order to corroborate the predictions against 

Tv. Table 7 summarizes these theoretical and biological achievements.  

 34



In general, it was observed a pretty good coincidence between the theoretical 

predictions and the observed activity for both active and inactive compounds. Our trained 

LDA-based QSAR models (Eq. 13 and Eq.14) were capable of successfully classify 6 out 

of 7 compounds yielding (both) an accuracy of the 85.71%.  

As for the in vitro experiments, should be highlighted that almost all compounds 

(VA7-34, VA7-37, VA7-38, VA7-68) exhibited pronounced cytocidal activities of 100% 

at the concentration of 100 µg/ml and at 24h (48h) but VA7-35 and VA7-70: 98,66% 

(99,40%), 99,83% (100%) respectively. It is remarkable that these compounds did not 

showed toxic activity in macrophages cultivations at this concentration. Also, as observed 

in Table 7 compounds VA7-37, VA7-38 and VA7-70 maintained a high trichomonacidal 

activity (98.38%, 97.59% and 94.38%, respectively) and low non-specific cytotoxicity at 

concentrations of 10µg/ml at 24h. However, only VA7-37 and VA7-38 remained with 

high levels of percentage of reduction of Tv (94.23% and 98.10%, respectively) at 48h at 

this concentration. 

N

N OO2N

Cl

H
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N

N OO2N

Cl

H

N

H
N OO2N
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Figure 2. Structures of quinoxaline derivatives for novel trichomonacidals discovery by 
ligand-based virtual screening LDA-assisted models. 
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Table 7. Results of the computational evaluation using LDA-assisted QSAR models and 
percentages of cytostatic and/or cytocidal activity [brackets] for the three concentrations 
assayed in vitro against Tv. 

Theoretical results   in vitro activity (µg/ml)f 

%CA24h [%C24h]  %CA48h [%C48h] 
Compound* 

 Class a ∆P%b Class c ∆P%d

 
Class e

100 10 1  100 10 1 

VA7-34 + 77.57 + 95.43  + [100] 87.13 15.63  [100] 35.17 0 

VA7-35 + 78.75 + 95.71  + [98.66] 88.92 2.27  [99.40] 56.93 0 

VA7-37 + 80.82 + 97.66  + [100] [98.38] 5.11  [100] [94.23] 11.11

VA7-38 + 71.88 + 83.80  + [100] [97.59] 1.99  [100] [98.10] 0 

VA7-68 + 89.54 + 91.82  + [100] 82.84 22.73  [100] 39.29 0 

VA7-70 + 90.24 + 92.44  + [99.83] [94.38] 22.73  [100] 83.64 6.99 

VA7-71 + 91.14 + 95.76  - 87.16 51.28 18.47  56.93 17.98 4.70 

MTZ + 50.39 + 42.97  + [100] [100] 87.89  [100] [100] 71.25
*The molecular structures of the compounds represented with codes are shown in Figure 2. a,cIn silico classification obtained from 
models Eq. 13 and Eq. 14 using non-stochastic and stochastic bond-type linear indices, respectively. b,dResults for the classification 
of compounds obtained from models Eq. 13 and Eq. 14, correspondingly: ∆P% = [P(Active) - P(Inactive)]x100. eObserved 
(experimental activity) classification against Tv. fPharmacological activity of each tested compound, which was added to the 
cultures at doses of 100, 10 and 1µg/ml: %CA# = Cytostatic activity (24 or 48 hours) and [%C#] = Cytocidal activity (24 or 48 hours).  MTZ = 
Metronidazole (concentrations for MTZ were 2, 1 and 0.5 µg/ml, respectively). 

 
These last results can be considered as a promising starting point for the future design 

and refinement of novel compounds with higher antitrichomonal activity with low 

toxicity. Although compounds VA7-37 and VA7-38 were active at higher doses than 

metronidazole, MTZ (reference drug), this result leaves a door open to a virtual 

variational study of the structure of these compounds in order to improve their activity. 

Besides our current results are significant because they demonstrate the straightforward 

way in which TOMOCOMD-CARDD method can identify new trichomonacidal agents. 

5. Concluding Remarks 

The bioinformatic tools TOMOCOMD-CARDD & STATISTICA 6.0, and therefore, 

the underlying work philosophy, were successfully applied to the discovery of novel 

antitrichomonals. Combine features of bond-based linear stochastic and non-stochastic 

MDs joined to LDA technique allowed us to generate robust biosilico models capable of 
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discriminating among active and inactive chemicals. The models’ predictive power was 

assessed in a simulated experiment, where these screening functions identified chemical 

agents already proved against Tv. Finally, our approach permitted us the generation of 

novel drug-like compounds which were in vitro assayed achieving promissory results as 

possible alternatives to MTZ treatment of trichomoniasis. 
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