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Abstract: New antitrichomonal agents are needed to combat emerging metronidazole-
resistant trichomoniasis and reduce the side-effects associated with currently available 
drugs. Toward this end, bond-based quadratic indices, new TOMOCOMD-CARDD 
molecular descriptors, and linear discriminant analysis (LDA) were used to discover 
novel, potent, and non-toxic lead trichomonacidal chemicals. Two discriminant functions 
were obtained with the use of non-stochastic and stochastic total and bond-type quadratic 
indices for heteroatoms. The obtained LDA-based QSAR models, using non-stochastic 
and stochastic indices, were able to classify correctly 87.91% (87.50%) and 89.01% 
(84.38%) of the chemicals in training (test) sets, respectively. They showed large 
Matthews’ correlation coefficients (C) of 0.75 (0.71) and 0.78 (0.65) for the training 
(test) sets, correspondingly. The result of predictions on the 10% full-out cross-validation 
test also evidenced the robustness of the obtained models. Later, both models were 
applied to the virtual screening of 12 compounds already proved against Trichomonas 
Vaginalis (Tv). As a result, they correctly classified 10 out of 12 (83.33%) and 9 out of 
12 (75.00%) of the chemicals, respectively; which is a more important criterion for 
validating the models. In addition, these classification functions were also applied to a 
library of twenty-one chemicals in order to find new lead antitrichomonal agents. These 
compounds were synthesized and tested for in vitro activity against Tv. As expected, 
theoretical results almost coincided with experimental ones since there was obtained a 
correct classification for both models of 95.24% (20 out of 21) of the chemicals. Out of 
the twenty-one compounds that were screened, and synthesized, two molecules 
(chemicals G-1, UC-245), showed high to moderate cytocidal activity at the 
concentration of 10µg/ml, other two compounds (G-0 and CRIS-148) showed high 
cytocidal activity only at the concentration of 100µg/ml, and the remaining chemicals 
(from CRIS-105 to CRIS-153 except CRIS-148) were inactive at these assayed 
concentrations. Finally, the best candidate, G-1 (cytocidal activity of 100% at 10µg/ml) 
was in vivo assayed in ovariectomized Wistar rats achieving promissory results as a 
trichomonacidal drug-like compound. The LDA-based QSAR models presented here can 
be considered as a computer-assisted system that could potentially significantly reduce 
the number of synthesized and tested compounds and increase the chance of finding new 
chemical entities with antitrichomonal activity. 
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“Models are to be used, not believed” 

           Menger, F.M. J. Am. Chem. Soc. 107 (1985) 3105. 

1. INTRODUCTION 

Trichomonas vaginalis (Tv) is the causative agent of the most common, non-viral, 

sexually transmitted disease. An estimated 3 million American women (approximately 

180 million women worldwide) are infected with Tv every year [1]. This parasite is the 

main cause of vaginitis, cervicitis and urethritis in women and may be responsible for 

prostatitis and other genito-urinary syndromes in men [2,3].  Infection with this organism 

has been linked to various additional pathologic manifestations, including cervical 

neoplasia [4-7], atypical pelvic inflammatory disease [8], and tubal infertility [9], and has 

been reported to be a risk factor in the development of posthysterectomy cuff cellulitis 

[10]. Infection with Tv has also been related to premature rupture of placental 

membranes, and low birth weight [11,12]. Intrauterine transmission of cytomegalovirus 

has been reported to be increased by Tv infection [13]. As similar, this infection can 

elevate the risk of acquiring human immunodeficiency virus [14, 15].  

The introduction of nitroheterocyclic drugs in the late 1950s and the 1960s heralded a 

new era in the treatment of infections caused by gram-negative and -positive bacteria and 

a range of pathogenic protozoan parasites. The antibiotic azomycin (a 2-nitroimidazole), 

isolated in Japan from a streptomycete, was the first active nitroimidazole to be 

discovered [16], and acted as the main impetus for the systematic search for drugs with 

activity against anaerobic protozoa. This led to the synthesis of the 5-nitroimidazole, 

metronidazole (1-b-hydroxyethyl-2-methyl-5-nitroimidazole) and the demonstration of its 

activity against Tv [17]. 
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Since then, metronidazole (MTZ) has been the drug of choice for treating 

trichomoniasis and is currently the only drug licensed for this purpose in the United 

States. The recommended MTZ regimen results in cure rates of approximately 95% [18]. 

In fact, MTZ is the drug now most widely used in the treatment of anaerobic protozoan 

parasitic infections caused by Tv, Giardia duodenalis, and Entamoeba histolytica [17,19-

22]. In addition, it is remarkably safe compared to the most toxic antiprotozoal products 

[23].  

MTZ enters the cell through diffusion [24] and is activated in the hydrogenosomes of 

Tv [25]. Here, the nitro group of the drug is anaerobically reduced by pyruvate-

ferredoxin oxidoreductase [25]. This results in cytotoxic nitro radical-ion intermediates 

that break the DNA strands [26]. The response is rapid: cell division and motility cease 

within 1h and cell death occurs within 8h as seen in cell culture [27]. 

Although there are clinical reports [28-35] that document the refractoriness of 

infections with Tv to treatment with MTZ, susceptibility tests have failed to demonstrate 

conclusively that the parasites isolated from such cases after treatment were resistant to 

this drug [36,37]. Thus, the resistance of Tv has not been generally accepted as the factor 

responsible for failure of MTZ therapy [38], since reinfection, irregular medication, poor 

absorption of the drug, and its inactivation by the vaginal flora have not been 

excluded.[37,39,40]. However, a strain of Tv, unequivocally resistant to MTZ, was 

recently isolated from a female patient who had not responded to two courses of 

treatment with this agent. The current report is concerned with the isolation of this strain 

and its in vitro and in vivo susceptibilities to MTZ and other 5-nitroimidazole derivatives 

[41]. 
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Although MTZ resistance has been considered rare, treatment of these rare patients 

who do not respond to treatment is extremely problematic for physicians and is 

associated with enormous patient suffering [42]. A good alternative to palliate this 

problem could be clinical treatment with other nitroimidazoles but unfortunately all of 

them have similar modes of antibacterial activity to MTZ [43], and so resistance to MTZ 

often includes resistance to the other nitroimidazoles [44]. 

Currently, is clear that new trichomonacidal agents are needed to treat resistant 

organisms. However, the great cost associated to the development of new compounds and 

the small economic size of the market for antiprotozoal drugs makes this development 

slow. For this reason, it is necessary to develop computational methods permitting 

theoretical –in silico- evaluations of trichomonacidal activity for virtual libraries of 

chemicals before these compounds are synthesized in the laboratory. This ‘in silico’ 

world of data, analysis, hypothesis, and models that reside inside a computer is 

alternative to the ‘real’ world of synthesis and screening of compounds in the laboratory 

[45,46]. 

At present, many large pharmaceutical industries have reoriented their research 

strategies seeking to solve the problem of generation/selection of novel chemical entities 

(NCEs), one of the major bottlenecks in the drug discovery pipeline. In fact, currently 

most integration projects include efforts to integrate the data associated with NCE 

generation [47]. Alternatively, several approaches to the computer-aided molecular 

design and high-throughput in silico screening (or virtual high-throughput screening) 

have been introduced in the literature [48]. Nevertheless, novel computational methods 

and strategies are required to deliver a system that significantly reduces the time-to-
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market and research and development (R&D) spendings, and increase the rate at which 

NCEs progress through the pipeline. Such studies if they are implemented successfully 

can deliver substantial benefits and act as the bedrock for NCE selection [47].  

In this context, our research group has recently introduced a novel scheme to perform 

rational –in silico- molecular design (or selection/identification of lead drug-like 

chemicals) and QSAR/QSPR studies, known as TOMOCOMD-CARDD (acronym of 

Topological MOlecular COMputer Design-Computer Aided “Rational” Drug Design) 

[49]. This method has been developed to generate 2D (topologic), 2.5 (3D-chiral) and 3D 

(topographic and geometric) molecular descriptors based on the application of the 

discrete mathematics and linear algebra theory to chemistry. In this sense, atomic, atom-

type, atom-group and total linear, bilinear and quadratic molecular fingerprints have been 

defined in analogy to the linear, bilinear and quadratic mathematical maps [50,51]. This 

in silico method has been successfully applied to the prediction of several physical, 

physicochemical and chemical properties of organic compounds [50-53]. In addition, 

TOMOCOMD-CARDD has been extended to consider three-dimensional features of 

small/medium-sized molecules based on the trigonometric-3D-chirality-correction factor 

approach [54]. This strategy has also been useful for the prediction of the 

pharmacokinetic properties of organic compounds [55-57], and the selection of novel 

subsystems of compounds having a desired property/activity [58-63].  

Later, promising results have been found in the modeling of the interaction between 

drugs and HIV-1 RNA packaging region in the field of bioinformatics using the 

TOMOCOMD-CANAR (Computed-Aided Nucleic Acid Research) approach [64,65].  
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Finally, an alternative formulation of our approach for structural characterization of 

proteins was carried out recently [66,67]. This extended method [TOMOCOMD-CAMPS 

(Computed-Aided Modeling in Protein Science)] was used to encompass protein stability 

studies by means of a combination of protein linear or quadratic indices (macromolecular 

fingerprints) and statistical (linear and nonlinear model) methods [66,67]. 

Recently, some of present authors have proposed a new extended local (bond and 

bond-type) and total (whole) molecular descriptors based on the adjacency of edges and 

based on quadratic maps similar to those typically defined by mathematicians in linear 

algebra. These researchers also proposed a new matrix representation of the molecule on 

the “stochastic” adjacency of edges and quadratic indices derived from there. These 

descriptors, called bond-based quadratic indices, encode topological information given by 

the molecular graph, weighted by chemical information encoded in selected bond 

weightings. Finally, the correlation ability of the new descriptors is tested in a QSPR and 

QSAR studies [68]. 

The main objective of this work was to use non-stochastic and stochastic bond-type 

quadratic indices to generate predictive LDA (linear discriminant analysis)-based QSAR 

models enabling the selection of new hits and lead drug-like compounds with 

antitrichomonal activity. The in vitro and in vivo evaluation of a new lead series of 

heterocyclic compounds with antitrichomonal activity is also presented.  

 

2. METHODOLOGY 

2.1. TOMOCOMD-CARDD Approach and 2D Bond-Based Quadratic Indices.  
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TOMOCOMD is an interactive program for molecular design and bioinformatic 

research [49]. It is composed of four subprograms; each one of them allows drawing the 

structures (drawing mode) and calculating molecular 2D/3D (calculation mode) 

descriptors. The modules are named CARDD (Computed-Aided ‘Rational’ Drug 

Design), CAMPS (Computed-Aided Modeling in Protein Science), CANAR (Computed-

Aided Nucleic Acid Research) and CABPD (Computed-Aided Bio-Polymers Docking). 

In the present report, we outline salient features concerned with only one of these 

subprograms, CARDD and with the calculation of non-stochastic and stochastic 2D 

bond-based quadratic indices.  

2.1.1. Theoretical Scaffold. The basis of the extension of quadratic indices that will be 

given here is the edge-adjacency matrix considered and explicitly defined in the chemical 

graph-theory literature [69,70], and rediscovered by Estrada as an important source of 

new molecular descriptors [71-76]. In this section, we first will define the nomenclature 

to be used in this work, then the atom-based molecular vector ( x ) will be redefined for 

bond characterization using the same approach as previously reported, and finally some 

new definition of bond-based non-stochastic and stochastic quadratic indices with its 

peculiar mathematical properties will be given.  

2.1.1.1. Background in Edge-Adjacency Matrix and New Edge-Relations: Stochastic 

Edge-Adjacency Matrix. Let G = (V, E) be a simple graph, with V = {v1, v2, ..., vn} and 

E = {e1, e2, ...em} being the vertex- and edge-sets of G, respectively. Then G represents a 

molecular graph having n vertices and m edge (bonds). The edge-adjacency matrix E of 

G (likewise called bond adjacency matrix, B) is a square and symmetric matrix whose 

elements eij are 1 if and only if edge i is adjacent to edge j [71,74,77]. Two edges are 
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adjacent if they are incidental to a common vertex. This matrix corresponds to the vertex-

adjacency matrix of the associated line graph. Finally, the sum of the ith row (or column) 

of E is named the edge degree of bond i, δ(eBi B) [72,75-77]. 

On the other hand, by using the edge (bond)-adjacency relationships we can find 

other new relation for a molecular graph that will be introduced here. The kth stochastic 

edge-adjacency matrix, ESP

k
P can be obtained directly from EP

k
P. Here, ESP

k
P = [P

k
Pes BijB] is a 

square table of order m (m = number of bonds) and the elements P

k
Pes BijB are defined as 

follows: 

i
k

ij
k

i
kk

ij
k

ij
k

e
e

ESUM
e

es
)()( δ

==                                                                                       (1)  

where, P

k
PeBijB are the elements of the kth power of E and the SUM of the ith row of E P

k 
Pare 

named the k-order edge degree of bond i, P

k
Pδ(eBi B). Note that the matrix ESP

k
P in Eq. 1 has the 

property that the sum of the elements in each row is 1. Such an mxm matrix with 

nonnegative entries having this property is called a “stochastic matrix” [78].  

2.1.1.2. Chemical Information and Bond-based Molecular Vector. The atom-based 

molecular vector ( x ) used to represent small-to-medium size organic chemicals has been 

explained in some detail elsewhere [49-68]. In a parallel manner to the development of x , 

we present the extension to the bond-based molecular vector ( w ). The components (wBi B) 

of w  are numeric values, which represent a certain standard bond property (bond-label). 

That is to say, these weights correspond to different bond properties for organic 

molecules. Thus, a molecule having 5, 10, 15,..., m bonds can be represented by means of 

vectors, with 5, 10, 15,..., m components, belonging to the spaces ℜP5 P, ℜ P10
P, ℜ P15

P,..., ℜ PmP, 

respectively; where m is the dimension of the real sets (ℜ PmP). This approach allows us 
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encoding organic molecules such as 2-hydroxybut-2-enenitrile through the molecular 

vector w  = [wBCsp3-Csp2B, wBCsp2=Csp2B, wBCsp2-Osp3 B, wBH-Osp3 B, wBCsp2-CspB, wBCsp≡Nsp B]. This vector 

belongs to the product space ℜP6 P. 

These properties characterize each kind of bond (and bond-types) within the 

molecule. Diverse kinds of bond weights (wBi B) can be used in order to codify information 

related to each bond in the molecule. These bond labels are chemically meaningful 

numbers such as standard bond distance [79-82], standard bond dipole [79-82] or even 

mathematical expressions involving atomic weights such as atomic Log P [83], surface 

contributions of polar atoms [84], atomic molar refractivity [85], atomic hybrid 

polarizabilities [86], and Gasteiger-Marsilli atomic charge [87], atomic electronegativity 

in Pauling scale [88] and so on. Here, we characterized each bond with the following 

parameter: 

wBi B= x Bi B/δ Bi B+ x Bj B/δ Bj                                                                                                                                                                B(2) B 

which characterizes each bond. In this expression x Bi B can be any standard weight of the 

atom i bonded with atom j. δ Bi B is the vertex (atom) degree of atom i. The use of each scale 

(bond property) defines alternative molecular vectors, w . 

2.1.1.3. Theory of Non-Stochastic and Stochastic Total (Whole) and Local (Bond 

and Bond-type) Quadratic Indices. If a molecule consists of m bonds (vector of ℜP

m
P), 

then the kth total quadratic indices are calculated as quadratic maps (quadratic form) in 

ℜ P

m
P in canonical basis set. Specifically, the kth total non-stochastic and stochastic bond-

quadratic indices, qBkB( w ) and P

s
PqBkB( w ), are computed from these kth non-stochastic and 

stochastic edge adjacency matrices, E P

k
P and ESP

k
P, as shown in Eqs. 3 and 4, 

correspondingly: 
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where, m is the number of bonds of the molecule, and wP

1
P,…,wP

m
P are the coordinates of the 

bond-based molecular vector ( w ) in the so-called canonical (‘natural’) basis. In this basis 

system, the coordinates of any vector w  coincide with the components of this vector 

[78,89,90]. For that reason, those coordinates can be considered as weights (bond-labels) 

of the edge of the molecular graph. The coefficients P

k
Pe BijB and P

k
Pes BijB are the elements of the 

kth power of the matrix E(G) and ES(G), correspondingly, of the molecular graph. The 

defining equations (3) and (4) for qBkB( w ) and P

s
PqBkB( w ), respectively, can be also written as 

the single matrix equations (see Eqs. 3 and 4), where [ w ] is a column vector (an mx1 

matrix) of the coordinates of w  in the canonical basis of  ℜ P

m
P and [ w ]P

t
P (an 1xm matrix)P

 
Pis 

the transpose of [ w ]. Here, EP

k
P and ESP

k 
Pdenote the matrices of quadratic maps with 

respect to the natural basis set. 

In addition to total bond-based quadratic indices, computed for the whole molecule, a 

local-fragment (bond and bond-type) formalism can be developed. These descriptors are 

termed local non-stochastic and stochastic quadratic indices, qBkL B( w ) and P

s
PqBkL B( w ), 

respectively. The definition of these descriptors is as follows: 

∑∑
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where, m is the number of bonds and P

k
Pe BijLB ( P

k
Pes BijLB) is the kthP

 
Pelement of the row “i” and 

column “j” of the local matrix EP

k
PBL B(ESP

k
PBL B). This local matrix is extracted from the E P

k
P (ESP

k
P) 

matrix and contains information referred to the edges (bonds) of the specific molecular 

fragments and also of the molecular environment in k steps. The matrix EP

k
PBL B(ESP

k
PBLB) with 

elements P

k
Pe BijLB ( P

k
Pes BijLB) is defined as follows:  

P

k
Pe BijL B( P

k
Pes BijLB) = P

 k
Pe Bij B( P

k
Pes BijLB) if both eBi B and e Bj B are edges (bonds) contained within the       

                      molecular fragment  

                  = ½ P

k
Pe Bij B( P

k
Pes BijLB) if e Bi B and eBj B are edges (bonds) contained within the molecular  

                     fragment but not both  

                  = 0 otherwise                                                                                             (7)                               

Notice that the above scheme follows the spirit of a Mulliken population analysis 

[91]. Note also that for every partitioning of a molecule into Z molecular fragments there 

will be Z local molecular fragment matrices. In this case, if a molecule is partitioned into 

Z molecular fragments, the matrices EP

k
P (ESP

k
P) can be partitioned into Z local matrices EP

k
PBL 

B(ESP

k
PBLB), L = 1,... Z, and the kth power of matrix E (ES) is exactly the sum of the kth power 

of the local Z matrices. In this way, the total non-stochastic and stochastic bond-based 

quadratic indices are the sum of the non-stochastic and stochastic bond-based quadratic 

indices, respectively, of the Z molecular fragments: 

)w(q)w(q
Z

L
kLk ∑

=

=
1

                                                                                                               (8) 

)w(q)w(q
Z

L
kL

s

k

s ∑
=

=
1

                                                                                                             (9)    



Bond and bond-type quadratic fingerprints are specific cases of local bond-based 

quadratic indices. In this sense, the kth bond-type quadratic indices are calculated by 

adding the kth bond quadratic indices for all bonds of the same type in the molecule. That 

is to say, this extension of the bond quadratic index is similar to group additive schemes, 

in which an index appears for each bond type in the molecule together with its 

contribution based of the bond quadratic index.                                                                                        

In the bond-type quadratic indices formalism, each bond in the molecule is classified 

into a bond-type (fragment). In this sense, bonds may be classified into bond types in 

terms of the characteristics of the two atoms which define the bond. For all data sets, 

including those with a common molecular scaffold as well as those with very diverse 

structure, the kth fragment (bond-type) quadratic indices provide much useful 

information. Thus, the development of the bond-type quadratic indices description 

provides the basis for application to a wider range of biological problems in which the 

local formalism is applicable without the need for superposition or a closely related set of 

structures. The bond-type descriptors combine three important aspects of structure 

information: 1) electron accessibility for the bonds of the same type, 2) presence/absence 

of the bond type, and 3) count of the bonds in the bond type. 

It is useful to perform a calculation on a molecule to illustrate the steps in the 

procedure. 

For this, in the next section we depict a pictorial representation of the calculus of the 

non-stochastic and stochastic quadratic indices of the bond matrix (both total and local) 

using a simple chemical example. 
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2.1.1.4. Sample Calculation. The quadratic indices of the bond matrix are calculated in 

the following way. Considering the molecule of 2-hydroxybut-2-enenitrile as a simple 

example, we have the following labelled molecular graph and bond-based adjacency 

matrices (E and ES). The second (k = 2) and third (k = 3) power of these matrices and 

bond-based molecular vector, w , are also given: 

HO
N
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2 3
45  

⎥
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⎢
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⎣
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=
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00010
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⎢
⎢
⎢
⎢

⎣

⎡

=

33.016.016.016.016.0
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16.005.016.016.0
16.016.016.05.00
33.0033.0033.0

2ES

 

 

⎥
⎥
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The molecule contains five localized bonds (corresponding to five edges in the H-

suppressed molecular graph). To these we will associate the five “bond orbitals” (bond-

labels) wB1 B, wB2 B, wB3 B, wB4 B, and wB5 B. Thus, w  = [wB1 B, wB2 B, wB3 B, wB4 B, wB5 B] = [wB(C-C)B, wB(C=C)B, wB(C-C)B, 

wB(C≡N)B, wB(C-O)B] and each “bond orbitals” can be computed by Eq. 2 using, for instance, the 

atomic electronegativity in Pauling scale (x) [88] as atomic weight (atom-label): 

wB1 B = x BC B /1 + x BC B /3 = 2.55/1 + 2.55/3 = 3.4 

wB2 B = x BC B /3 + x BC B/4 = 2.55/3 + 2.55/4 = 1.4875 

wB3 B = x BC B /4 + x BC B /4 = 2.55/4 + 2.55/4 = 1.275 
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wB4 B = x BC B/4 + x BN B /3 = 2.55/4 + 3.04/3 = 1.650833 

wB5 B = x BC B/4 + x BO B/1 = 2.55/4 + 3.44/1 = 4.0775 

and therefore, w  = [3.4, 1.4875, 1.275, 1.650833, 4.0775]. 

Each non-stochastic and stochastic total quadratic indices will have the form: 

qBkB( w ) = P
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The P

k
Pe BiiB’s and P

k
Pes BiiB’s can be considered a measure of the attraction of an electron for a 

bond in the k step. The P

k
Pe BijB’s and P

k
Pes BijB’s are the terms of interaction between two bonds in 

the k step. The P

k
Pe BijB’s = P

k
Pe BjiB’s are equal by symmetry (non-oriented molecular graph), 

however, P

k
PesBijB ≠ P

k
Pes BjiB. This is a logical result because the kth esBijB elements are the transition 

probabilities with the ‘electrons’ moving from bond i to j at the discrete time periods t BkB 

and it should be different in both senses. This result is in total agreement if the 

electronegativity of the two atom types in the bonds are taken into account. 

In this way, EP

k
P and ESP

k
P can be seen as graph–theoretic electronic–structure models 

[92]. In fact, quantum chemistry starts from the fact a molecule is made up of electrons 



and nuclei. The distinction here between bonded and non-bonded atoms is difficult to 

justify. Any two nuclei of a molecule interact directly and indirectly through the electrons 

present in the molecule. Only the intensity of this interaction varies in going from one 

pair of nuclei to another. In this sense, the electron in an arbitrary bond i can move (step-

by-step) to other bonds at different discrete time periods tk (k = 0, 1, 2, 3,…) through the 

chemical-bonding network. That is to say, the E1 and ES1 matrices consider the valence-

bond electrons in one step and their power (k = 0, 1, 2, 3…) can be considering as an 

interacting–electron chemical–network model in k step. This model can be seen as an 

intermediate between the quantitative quantum-mechanical Schrödinger equation and 

classical chemical bonding ideas [92]. 

On the other hand, the kth (k = 0 – 3) non-stochastic total quadratic indices can be 

expressed as the sum of the local (bond) quadratic indices for this molecule as follows: 

q0( w ) = q0L( w )1 + q0L( w )2 + q0L( w )3 + q0L( w )4 + q0L( w )5 = 11.56 + 2.21265625 + 

1.625625 + 2.72525069 + 16.6260063 = 34.7495382 

q1( w ) = q1L( w )1 + q1L( w )2 + q1L( w )3 + q1L( w )4 + q1L( w )5 = 5.0575 + 13.0193438 + 

9.2001875 +2.1048125 + 11.2640938 = 40.6459375 

q2( w ) = q2L( w )1 + q2L( w )2 + q2L( w )3 + q2L( w )4 + q2L( w )5 = 29.7585 + 17.0554271 + 

16.30725 +11.9121382 + 65.1108792 = 140.144194 

q3( w ) = q3L( w )1 + q3L( w )2 + q3L( w )3 + q3L( w )4 + q3L( w )5 = 38.9838333 + 

55.7973646 + 44.17875 + 21.1141583 + 98.9031604 = 258.977267 

The terms in the summations for calculating the total quadratic indices are the so-

called local (bond) quadratic indices. We have written these terms in the consecutive 

order of the bond labels in the graph. For instance, the non-stochastic bond quadratic 
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indices of order 0, 1, 2 and 3 for the bond labelled as 1 are 11.56, 5.0575, 29.7585, and 

38.9838333, respectively. 

The kth total bond-based stochastic quadratic indices values are also the sum of the 

kth local (bond) stochastic quadratic indices values for all bonds in the molecule: 

sq0( w ) = sq0L( w )1 + sq0L( w )2 + sq0L( w )3 + sq0L( w )4 + sq0L( w )5 = 11.56 + 

2.21265625 + 1.625625 + 2.72525069 + 16.6260063 = 34.7495382 

q1( w ) = sq1L( w )1 + sq1L( w )2 + sq1L( w )3 + sq1L( w )4 + sq1L( w )5 = 3.37166667 + 

6.53105469 + 4.20156771 +1.40320833 + 4.6933724 = 20,2008698 

sq2( w ) = sq2L( w )1 + sq2L( w )2 + sq2L( w )3 + sq2L( w )4 + sq2L( w )5 = 8.40295833 + 

3.04720573 + 3.079125 + 3.20513877 + 12.5680443 = 30.3024721 

sq3( w ) = sq3L( w )1 + sq3L( w )2 + sq3L( w )3 + sq3L( w )4 + sq3L( w )5 = 4.94428472 + 

4.80340608 + 3.65101563 + 2.80005408 + 8.72457578 = 24.9233363  

2.2. Computational Strategies.  

The main steps for the application of present method in QSAR/QSPR and drug design 

can be briefly summarized in the following set of steps: 1) Draw the molecular 

pseudographs for each molecule of the data set, using the software drawing mode. This 

procedure is performed by a selection of the active atomic symbol belonging to the 

different groups in the periodic table of the elements, 2) Use appropriated atomic 

properties in order to weight and differentiate the molecular bonds. In this study, the 

weights used are those previously proposed for the calculation of the DRAGON 

descriptors, [88, 94-95] i.e., atomic mass (M), atomic polarizability (P), atomic 

Mullinken electronegativity (K), van der Waals atomic volume (V), plus the atomic 

electronegativity in Pauling scale (G)  [96] .The values of these atomic labels are shown 
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in Table 1. [88,94-95].  In this case, we are used the mathematical expression in Eq. 2, 

which involving atomic weights (see Table 1), 3) Compute the total and local (bond and 

bond-type) non-stochastic and stochastic quadratic indices. It can be carried out in the 

software calculation mode, where you can select the atomic properties and the descriptor 

family previously to calculate the molecular indices. This software generates a table in 

which the rows correspond to the compounds, and columns correspond to the total and 

local bond-based quadratic indices or other molecular descriptors family implemented in 

this program, 4) Find a QSPR/QSAR equation by using several multivariate analytical 

techniques, such as multilinear regression analysis (MRA), neural networks (NN), linear 

discrimination analysis (LDA), and so on. That is to say, we can find a quantitative 

relation between an activity A and the linear indices having, for instance, the following 

appearance, A = a0q0( w ) + a1q1( w ) + a2q2( w ) +….+ akqk( w ) + c, where A is the 

measured activity, qk( w ) are the kth total bond-based quadratic indices, and the ak’s are 

the coefficients obtained by the linear regression analysis, 5) Test the robustness and 

predictive power of the QSPR/QSAR equation by using internal (cross-validation) and 

external (using a test set and an external predicting set) validation techniques, and 6) 

Apply the obtained LDA-based QSAR models as cheminformatic tool for identifying 

leads through ligand-based virtual screening-drug discovery process. 

The bond–based TOMOCOMD-CARDD descriptors computed in this study were the 

following: 

1)   kth (k = 15) total non-stochastic bond-based quadratic indices not considering 

and considering H-atoms in the molecular graph (G) [qk( w ) and qk
H( w ), 

respectively]. 
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2) kth (k = 15) total stochastic bond-based quadratic indices not considering and 

considering H-atoms in the molecular graph (G) [sqk( w ) and sqk
H( w ), respectively]. 

3)   kth (k = 15) bond-type local (group = heteroatoms: S, N, O) non-stochastic 

quadratic indices not considering and considering H-atoms in the molecular graph (G) 

[qkL( w E) and qkL
H( w E), correspondingly]. These local descriptors are putative 

molecular charge, dipole moment, and H-bonding acceptors.  

4)   kth (k = 15) bond-type local (group = heteroatoms: S, N, O) stochastic 

quadratic indices not considering and considering H-atoms in the molecular graph (G) 

[sqkL( w E), and sqkL
H( w E), correspondingly]. These local descriptors are putative 

molecular charge, dipole moment, and H-bonding acceptors. 

Table 1. Values of the Atom Weights Used for Quadratic Indices Calculation [88,94-95].
ID Atomic 

Mass 
VdW                 

Volume 
Mulliken 

Electronegativity 
Polarizability Pauling 

Electronegativity 
H 1.01 6.709 2.592 0.667 2.2 
B 10.81 17.875 2.275 3.030 2.04 
C 12.01 22.449 2.746 1.760 2.55 
N 14.01 15.599 3.194 1.100 3.04 
O 16.00 11.494 3.654 0.802 3.44 
F 19.00 9.203 4.000 0.557 3.98 
Al 26.98 36.511 1.714 6.800 1.61 
Si 28.09 31.976 2.138 5.380 1.9 
P 30.97 26.522 2.515 3.630 2.19 
S 32.07 24.429 2.957 2.900 2.58 
Cl 35.45 23.228 3.475 2.180 3.16 
Fe 55.85 41.052 2.000 8.400 1.83 
Co 58.93 35.041 2.000 7.500 1.88 
Ni 58.69 17.157 2.000 6.800 1.91 
Cu 63.55 11.494 2.033 6.100 1.9 
Zn 65.39 38.351 2.223 7.100 1.65 
Br 79.90 31.059 3.219 3.050 2.96 
Sn 118.71 45.830 2.298 7.700 1.96 
I 126.90 38.792 2.778 5.350 2.66 
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2.3. Database Selection 

In order to obtain mathematical expressions capable of discriminating between active 

and inactive compounds, the chemical information contained in a great number of 

compounds with and without the desired biological activity must be statistically 

processed. Taking into account that the most critical aspect in the construction of a 

training data set is the molecular diversity of the included compounds, we selected a 

group of 123 organic chemicals having as much structural variability as possible. The 50 

antitrichomonals considered in this study are representative of families with diverse 

structural patterns and action modes. Figure 1 shows a representative sample of such 

active compounds. On the other hand, 73 compounds having different clinical uses were 

selected for the set of inactive compounds, through a random selection, guaranteeing also 

a great structural variability. All these chemicals were taken from the Negwer Handbook 

[97], and Merck Index [98], where their names, synonyms and structural formulas can be 

found. From these 123 chemicals, 91 were chosen at random to form the training set, 

being 40 of them active and 51 inactive ones.  

The great structural variability of the selected training data set makes possible the 

discovery of lead compounds, not only with determined mechanisms of antitrichomonal 

activity, but also with novel modes of action (which will be illustrated well in this paper 

in a virtual experiment for lead compounds generation). The remaining subseries 

consisting of 10 trichomonacidals and 22 non- trichomonacidals were prepared as test 

sets for the external validation of the models (32 chemicals). These compounds were 

never used in the development of the classification models. 
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Figure 1. Random sample of the molecular families of trichomonacidal agents studied 

here. 
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2.4. Data Analysis and Processing: Linear Discriminant Analysis. 

The discriminant functions were obtained by using the Linear Discriminant Analysis 

(LDA) [99] as implemented in the STATISTICA [100]. The default parameters of this 

program were used in the development of the model. Forward stepwise was fixed as the 

strategy for variable selection. The principle of parsimony (Occam's razor) was taken into 

account as they strategy for model selection. In its original form, the Occam’s razor states 

that »Numquam ponenda est pluritas sin necesitate«, which can be translated as »Entities 

should not be multiplied beyond necessity« [101]. In this case, simplicity is loosely 

equated with the number of parameters in the model. If we understand the predictive 

error to be the error rate for unseen examples, the Occam’s razor can be stated for the 

selection of QSAR/QSPR models as (“QSAR/QSPR Occam’s Razor”): Given two 

QSAR/QSPR models with the same predictive error, the simplest one should be preferred 

because simplicity is desirable in itself [101]. In this connection, we select the model with 

higher statistical signification but having as few parameters (aBkB) as possible.  

The quality of the models were determined by examining Wilks’ λ parameter (U-

statistic), squared Mahalanobis distance (DP

2
P), Fisher ratio (F) and the corresponding p-

level (p(F)) as well as the percentage of good classification in the training and test sets 

[99]. Models with a proportion between the number of cases and variables in the equation 

lower than 5 were rejected.  

The Wilks’ λ for the overall discrimination can take values in the range of 0 (perfect 

discrimination) to 1 (no discrimination). The DP

2
P statistics indicates the separation of the 

respective groups, showing whether the model possesses an appropriate discriminatory 

power for differentiating between the two respective groups. 
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By using the models, one compound can then be classified as either active, if ∆P% > 

0, being ∆P% = [P(Active) - P(Inactive)]x100 or inactive otherwise. P(Active) and 

P(Inactive) are the probabilities with which the equations classify a compound as active 

and inactive, respectively.  

The statistical robustness and predictive power of the obtained model were assessed 

using a prediction (test) set [102]. Also a leave-group-out (LGO) cross-validation strategy 

was carried out. In this case, 10% of the data set was used as group size, i.e. groups 

including 10% of the training data set were left out and predicted by the model based on 

the remaining 90%. This process was carried out 10 times on 10 unique subsets. In this 

way, every observation was predicted once (in its group of left-out observations). The 

overall mean for this process (10% full leave-out cross-validation) was used as a good 

indication of robustness, stability and predictive powers of the obtained models [102]. 

Finally, the calculation of percentages of global good classification (accuracy), 

sensibility, specificity (also known as ‘hit rate’), false positive rate (also known as ‘false 

alarm rate’) and Matthews correlation coefficient (C ) in the training and test sets 

permitted the assessment of the model [103].  

2.5. Determination of in vitro Trichomonacidal Activity 

The biological activity was assayed on TTv TJH31A #4 Ref. No. 30326 (ATCC, MD, 

USA) in modified Diamond medium supplemented with equine serum and grown at 37 

˚C (5% COB2 B). The compounds were added to the cultures at several concentrations (100, 

10, and 1 µg/ml) after 6 h of the seeding (0 h). Viable protozoa were assessed at 24 and 

48 h after incubation at 37 ˚C by using the Neubauer chamber. MTZ (Sigma-Aldrich SA, 

Spain) was used as reference drug at concentrations of 2, 1, 0.5 µg/ml. Cytocidal and 



cytostatic activities were determined by calculation of percentages of cytocidal (%C) and 

cytostatic activities (%CA), in relation to controls as previously reported [104.105].  

2.6. Determination of in vivo Trichomonacidal Activity 

In this study, we examined the protective efficacy of G-1 in ovariectomized rats and 

dealt with estradiol [106].  The used excipient to dissolve the active principle G-1 was 

Migliol® 810 N (HULS AG Canada). 

The taking of sample for the diagnosis 1 of the infection were carried out previous to 

the application intravaginal of the first dose with G-1, this allowed us to know the 

number of rats infected before the first treatment. The days 7 and 8 were carried out a 

similar procedure that it allowed us to value the effect of the first one and second dose 

(see Table 2) 

Table 2. Infection with T. vaginalis, treatment with G-1 and diagnosis of the rats. 
 Day 

Group 0 2 - 3 6 7 8 9; 11; 13; 15 
 Estrogen. Infection Diag T. 1 Diag T. 2 Diag T. 3 Diag 

I G-1 G-1 G-1 

II M M M 

III - - - 

IV 

Estradiol 
10 mg/kg T.v 1 

Mtz 

2 

Mtz 

3 

Mtz 

4 - 7 

T. = Treatment number 
Estrogen. = Estrogenization 
Diag = Diagnostic number 
T.v. = 5 x 106 T.v/ml /intravaginal inoculation 200 µl  
M = Migliol 
G-1 = 2-bromo-5-(2-bromo-2-nitrovinil)furano  /0.125% 
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3. RESULTS AND DISCUSSION 

3.1. Development and Validation of the Discriminant Functions.  

Although the number of existing statistical methods to get classification functions is 

relatively extensive, we select linear discriminant analysis (LDA) given the simplicity of 

the method [99]. The use of LDA in rational drug design has been extensively reported 

by different authors [46,52-54,56-64]. Therefore, LDA was also the technique used in the 

generation of discriminant functions in the current work. Making use of the LDA 

technique implemented in the STATISTICA software [100], the following linear models 

were obtained; in which total as well as local non-stochastic and stochastic bond-based 

quadratic indices were used as independent variables:  

Class = -4.92 -1.40x10 P

-3 M
PqB1 B( w ) +0,22P

P
PqB0 PB

H
P( w ) +2.01x10P

-2 P
PqB1 B( w ) -1.44x10P

3 V
PqB0LB( w BEB) 

                    +0.13 P

E
PqB0LPB

H
P( w BEB) +5.82x10P

-2 E
PqB1LPB

H
P( w BEB)                                               (12) 

N = 91         λ = 0.44          DP

2 
P= 5.02         F(6.84) = 17.71          p<0.0001 

 

Class = -5.50 +2.78x10P

-3 Ms
PqB0LB( w BEB) +7.87x10P

-3 Ms
PqB1LB( w BEB) -1.49x10P

-2Ms
PqB3LB( w BEB) 

               -0,25 P

Ps
PqB1LPB

H
P( w BEB) +0.49P

Es
PqB3LPB

H
P( w BEB)                                                             (13)       

N = 91         λ = 0.36         DP

2 
P= 6.86         F(5.85) = 29.39          p<0.0001 

where N is the number of compounds, λ is Wilks’ statistics, DP

2 
Pis the square of the 

Mahalanobis distance, F is the Fisher ratio and p is the significance level. 

Model 12 classifies correctly 85% of active and 90.20% of inactive compounds in the 

training set for a global good classification (accuracy) of 87.91%. Model 13 classifies 

correctly 89.01% of the compounds in training set. Specifically, the model correctly 

classifies 35 out of 40 (87.50%) trichomonacidal compounds and 46 out of 51 (90.20%) 



inactive chemicals in the training series. On the other hand, Eqs. 12 and 13 show a 

87.50% (30/32) and 84.38% (27/32) of global predictability in the prediction series, 

respectively. These results validate the models for use in the ligand-based virtual 

screening taking into consideration that 85.0% is considered as an acceptable threshold 

limit for this kind of analysis [107]. 

In Tables 3 and 4 we give the names of all compounds in the training and test active 

and inactive sets together with their posterior probabilities calculated from the 

Mahalanobis distance using both equations. The same information of all compounds in 

the training and test inactive set appears in Table 5 which summarizes the results of the 

classifications for both models in the training and test groups.  

A more serious analysis was carried out by calculating most of the parameters 

commonly used in medical statistics (accuracy, sensitivity, specificity and false positive 

rate) and the Matthews correlation coefficient (C). Table 5 also lists these parameters for 

both obtained models [103,108]. While the sensitivity is the probability of correctly 

predicting a positive example, the specificity is the probability that a positive prediction 

is correct. On the other hand, C quantifies the strength of the linear relation between the 

molecular descriptors and the classifications, and it may often provide a much more 

balanced evaluation of the prediction than, for instance, the percentages [103,108]. The 

obtained models, Eqs. 12 and 13, showed a high C of 0.75 (0.71) and 0.78 (0.65) in 

training (test) sets, correspondingly. 

Although, the most important criterion for the quality of the discriminant model is 

based on the statistics for the external prediction set, for a more exhaustive testing of the 
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predictive power of the models, we carried out a leave-10-fold full-out (LGO) cross-

validation procedure. For each group of observations left out (10% of the whole data set, 

9 compounds), a model was developed from the remaining 90% of the data (81 

compounds). This process was carried out ten times on ten unique subsets. The statistical 

results are depicted in Table 6. The overall mean of the correct classification in training 

(test) set for this process for Eq. 12 and 13 was 87.69% (85.64%) and 89.03% (87.86%), 

correspondingly. The result of predictions on the 10% full cross-validation test evidenced 

the quality (robustness, stability and predictive power) of the obtained models. 

Table 3. Names and classification of active compounds in training and test series 
according to the two TOMOCOMD-CARDD models developed in this work. 
Name ∆P%P

a
P ∆P%P

b
P Name ∆P%P

a
P ∆P%P

b
P 

Active training set 
Anisomycin -29.28 38.15 Abunidazole 32.45 93.47 
Virustomycin A 78.19 99.40 Imoctetrazoline 35.27 -36.35 
Azanidazole 92.53 98.84 Forminitrazole 89.57 83.54 
Carnidazole 94.20 92.49 Chlomizol 90.67 98.19 
Propenidazole 97.42 99.67 Acinitrazole 89.22 75.81 
Lauroguadine -92.30 -45.38 Moxnidazole 99.93 99.99 
Mepartricin A 91.53 98.36 Isometronidazole 68.48 91.48 
Metronidazole 69.08 91.09 Mertronidazole phosphate 90.49 71.43 
Nifuratel 99.22 99.97 Benzoylmetronidazole 98.17 98.76 
Nifuroxime 89.84 98.08 Bamnidazole 96.73 96.93 
Nimorazole 90.55 93.45 Glycarsiamidon -34.15 -10.61 
Secnidazole 59.89 77.39 Fexinidazole 81.25 99.62 
Cariolin -84.08 6.12 Piperanitrozole 96.83 84.34 
2 -Amino -5 -nitrotiazola 48.25 39.79 Gynotabs 87.94 84.24 
Glycobiarzol 83.73 97.80 Pirinidazole 90.84 96.71 
Clioquinol 37.59 98.07 Metronidazole hydrogen succinate 98.96 97.36 
Diiodohydroxy 
quinoline 

63.69 95.97 Tolamizol 96.88 93.24 

Ornidazol 92.97 98.30 Thiacetarsamide 6.22 -65.88 
Trichomonacid 87.66 92.43 Tivanidazole 95.85 87.49 
Lutenurine -31.81 51.26 Policresulen -63.25 -78.01 

Active test set 
Acertarsone -27.20 10.11 Pentamycin -96.53 -99.57 
Furazolidone 99.72 99.93 Azomycin 56.06 75.54 
Mepartricin B 93.76 50.32 Ternidazole 66.21 80.99 
Aminitrozole 89.22 75.81 Misonidazole 74.42 94.52 
Clotrimazol 1.93 -37.19 Satranidazole 98.48 98.93 
P

a,b
PAntitrichomonal  activity predicted by Eqs (12) and (13), respectively: ∆P% = [P(Active) - 

P(Inactive)]x100. 
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Table 4. Names and classification of inactive compounds in training and test series 
according to the two TOMOCOMD-CARDD models developed in this work. 
Name ∆P%P

a
P ∆P%P

b
P Name ∆P%P

a
P ∆P%P

b
P 

Inactive training set 
Amantadine -99.81 -99.56 Nonaferone -71.30 -95.07 
Thiacetazone -78.46 -98.10 Rolipram -77.60 -56.38 
Cloral betaine -99.28 -99.86 N-hydroxymethyl-N-methylurea -98.25 -99.87 
Carbavin -89.39 -90.44 4 chlorobenzoic acid -70.71 -86.21 
Norantoin -66.14 -76.73 Acetanilide -93.65 -98.37 
Orotonsan Fe -14.22 20.01 Guanazole -98.65 -99.71 
Picosulfate 84.58 68.69 Tetramin -97.88 -99.37 
Naftazone -67.94 -85.64 Mecysteine -98.74 -98.30 
Besunide -70.54 -85.55 Cirazoline -87.74 -94.17 
Acetazolamide -12.85 -91.01 Methocarbamol -25.86 -11.53 
Propamine''soviet -99.91 -99.99 Lysergide -87.90 -87.90 
RMI 11894 -99.12 -99.43 Dopamine -98.72 -97.60 
Ag 307 -94.12 -99.45 Bufeniode 11.15 -93.94 
Barbismethylii iodide -99.16 -97.44 Celiprolol -65.72 -86.20 
Pancuronium bromide -96.31 -96.64 Erysimin -40.42 -18.58 
Vinyl ether -92.23 -97.95 Peruvoside -13.71 64.09 
Basedol -61.43 -79.61 Amitraz -89.33 -93.66 
Carbimazole 32.19 -31.10 Proclonol -59.16 -94.61 
Didym levulinate -94.02 -98.80 Asame -81.15 -97.62 
Perchloroethane -99.51 -97.54 KC-8973 -51.60 -88.11 
Pyrantel tartrate -93.30 -98.23 Ethydine 38.73 11.75 
Fentanyl -71.40 -96.78 Magnesii metioglicas -76.55 -99.99 
Petidina -92.06 -90.11 Alibendol -88.74 -50.31 
Tenalidine tartrate -99.27 -99.91 Diponium Bromide -94.93 -97.04 
Bamipine -96.60 -98.94 Streptomycin 74.73 86.40 
Colestipol -99.82 -99.91    

Inactive test set 
Citenazone -79.26 -99.27 Metriponate -96.96 -78.40 
Methenamine -83.69 -90.40 Ciclopramine -97.13 -92.79 
Penthrichloral -93.97 73.04 Litracen -99.63 -99.09 
Calcium Sodium ferriclate -100.00 -100.00 Trimetilsulfonium hidroxide -99.98 -100.00 
Ferroceron 90.05 -97.27 Norgamem -96.22 -97.12 
Emodin -76.24 -79.33 Emylcamate -91.15 -95.42 
Butanolum -99.09 -99.60 Acetylcholine -99.40 -99.74 
Spironolactone -86.18 -93.07 Carazolol -91.64 -96.38 
Bromcholine -99.95 74.90 Cefazolin 99.69 99.69 
Imekhin -99.77 -99.64 Penicillin I -33.19 -52.65 
Diphenadione -70.80 -94.80 Aziromycin -89.86 -92.22 
P

a,b
PAntitrichomonal  activity predicted by Eqs  12 and 13, respectively: ∆P% = [P(Active) - 

P(Inactive)]x100.  
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Table 5. Prediction performances for two LDA-based QSAR models (using non-
stochastic and stochastic bond-type quadratic indices) in the training and test sets. 

 Matthews Corr. 
Coefficient (C) 

Accuracy  ‘QBTotalB’ (%) 
 

Sensitivity 
‘hit rate’ (%) 

Specificity  (%) 
 

 False positive rate 
‘false alarm rate’ (%) 

Non-Stochastic Bond-Type Quadratic Indices (Eq. 12)   
Learning set 0.75 87.91 0.85 0.87 0.098 
Predicting set 0.71 87.50 0.8 0.80 0.09 
Stochastic Bond-Type Quadratic Indices (Eq. 13)   
Learning set 0.78 89.01 0.88 0.88 0.10 
Predicting set 0.65 84.38 0.8 0.73 0.14 

 
     Table 6. Results of the 10-fold full cross-validation procedure. 

Groups 
 

Q%P

a
P
 λ DP

2
P
 F Q%P

b
P
 Q%P

a
P
 λ DP

2
P
 F Q%P

b
P
 

Eq. 12 (Non-Stochastic Bond-based Quadratic indices) Eq. 13 (Stochastic Bond-based Quadratic indices) 
 

1 90.12 0.42 5.52 17.24 80.00 90.12 0.34 7.72 29.32 80.00 
2 87.80 0.43 5.15 16.24 88.89 89.02 0.37 6.89 26.44 77.78 
3 85.37 0.47 4.54 14.33 100.00 87.80 0.38 6.49 24.92 100.00 
4 86.59 0.47 4.43 13.98 100.00 87.80 0.39 6.16 23.63 100.00 
5 87.80 0.44 5.03 15.88 77.78 89.02 0.37 6.71 25.74 88.89 
6 87.80 0.41 5.74 18.11 88.89 90.24 0.35 7.37 28.28 77.78 
7 86.59 0.42 5.47 17.27 77.78 90.24 0.36 7.12 27.33 77.78 
8 89.02 0.44 5.09 16.07 77.78 89.02 0.36 6.96 26.72 100.00 
9 89.02 0.43 5.32 16.79 77.78 89.02 0.36 7.17 27.50 88.89 
10 86.75 0.44 5.06 16.23 87.50 87.95 0.37 6.75 26.33 87.50 
Mean 87.69 0.44 5.14 16.21 85.64 89.03 0.36 6.93 26.62 87.86 
SD 1.42 0.02 0.41 1.28 8.92 0.96 0.02 0.44 1.64 9.49 
P

a, b
P Global good classification from both models in training (90% of the data) and test (10% of the data) 

sets, respectively. 
  

3.2. ‘Virtual’ and ‘in Silico’ Screening as Promissory Alternative for Drug Discovery  

In addition to high-throughput screening technology, virtual (in silico) screening has 

become one of the main tools for identifying leads [47,48,109]. Virtual screening is 

actually one of the computational tools used to filter out unwanted chemicals from 

physical and/or in silico libraries [47,48,109]. Virtual screening techniques may be 

classified according to their particular modeling of molecular recognition and the type of 

algorithm used in database searching [47,48,109]. If the target (or at least its active site) 

3D structure is known, one of the structure-based virtual screening methods can be 



applied. By contrast, ligand-based methods are founded on the principle of similarity, that 

is, similar compounds are assumed to produce similar effects. The absence of a receptor 

3D structure is the main reason for the application of ligand-based methods. However, 

most (Q)SAR methods are focused on one single family of compounds or a specific 

action mode. Nevertheless, our group has shown that new lead drugs can be designed 

and/or selected even if their mechanism of action is completely unknown, by using 

algorithms based on the structural characterization of a structurally diverse database with 

molecular descriptors and some pattern recognition technologies such as LDA 

[46,58,59,110,111]. 

3.2.1. Corroboration of the models’ predictive power through a second external test 

set. 

In order to prove the possibilities of the present approach for the ligand-based virtual 

screening of antitrichomonal compounds, we have selected a series of 12 compounds, as 

a second external test set, whose activities against Tv have already been proved by 

several researchers [112,113,114]. They all were evaluated with models 12 and 13 as 

active/inactive ones. Its structures as well as the results of the classification are shown in 

Table 7. 

By these means, the present study is conducted to test the possibilities of the 

classification models developed here, in detecting trichomonacidals with diverse 

chemical structures. The verification of the predictions carried out by all the obtained 

models comes from the recent reports in the literature, from where these compounds were 

selected. The results of the classification of the compounds in this external test set are 

also summarized in Table 7.
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Table 7. Lead identification among chemicals extracted from literature as active or 
inactive toward the antitrichomonal activity by using LDA-based QSAR models in 
simulate virtual screening. 
 
 
                   

N
N ClO

1: n = CH2

2: n = CH2-CH2

R

n

R = H

R = H
3: n = CH2=CH2

R = NH2

 

4

5

R1 R2

furfuril

furfuril

(CH2)5-COOH

CH2-COOHN N

SS

R1 R2

8

9

10

furfuril

furfuril

(CH2)5-COOH (CH2)5-COOH

CH(CH2CONH2)-COOH

CH CH2-CH(CH3)2 -COOH

6

7

furfuril

furfuril CH2-CONH-CH2-COOH

CH(CH2Ph)-COOH

N

N

N
O O

R

N

H

N
BnR

N NHR

11

12

4-10

 
Comp.P

a
P
 Ref.P

b
P ∆P%P

c
P ∆P%P

d
P Antitrichomonal  activity 

1 -14.70 -36.09 inactive 
2 -18.99 -42.54 inactive 
3 

Gavini et. al., 2000  

-22.78 -24.75 inactive 
4 66.49 -28.97 100 µg/ml = 100P

e 

10 µg/ml = (100)P

f
P
 

1 µg/ml = (100)P

 f
P
 

5 76.66 42.66 100 µg/ml = 100P

 e
P
 

10 µg/ml = (100)P

 f
P
 

1 µg/ml = (97)P

 f
P
 

6 86.39 79.25 100 µg/ml = 100P

 e
P
 

10 µg/ml = (18)P

 f
P
 

1 µg/ml = (12)P

 f
P
 

7 91.03 60.63 100 µg/ml = 100P

 e
P
 

10 µg/ml = (100)P

 f
P
 

1 µg/ml = (73)P

 f
P
 

8 87.67 83.14 100 µg/ml = 100P

 e 

10 µg/ml = (100)P

 f
P
 

1 µg/ml = (93)P

 f
P
 

9 68.30 72.92 100 µg/ml = 100P

 e
P
 

10 µg/ml = (33)P

 f
P
 

1 µg/ml = (94)P

 f
P
 

10 

Ochoa et al., 1999 

-5.25 -97.46 100 µg/ml = 100P

 e
P
 

10 µg/ml = (25)P

 f
P
 

1 µg/ml = (65)P

 f
P
 

11 90.34 83.38 Inactive 
12 

Alcalde et. al., 1995 
83.68 73.30 MLCP

g
P = 50 µg/ml 

LDB50 PB

h
P = 50 µg/ml 

P

a
PThe molecular structures of the compounds represented with numbers are shown at the top of this table. 

P

b
PBibliographical references from where molecules together with its in vitro activities were taken. 

P

c,d
PAntitrichomonal  activity predicted by Eq 12 and Eq 13; ∆P% = [P(Active) - P(Inactive)]x100. 

P

e
PPercentage of reduction of T. Vaginalis or cytocidal activity at the indicated doses at 24h. P

f
PSpecific activity 

against T. Vaginalis (in brackets) expressed as percentages of growth inhibition or cytostatic activity at 24h. 
P

g
PMLC: minimum lethal concentration that killed all the parasites by 24h. P

h
PLDB50 B: minimum concentration 

that reduced the number of parasites at least 50%. 
 



As can be seen, both models classify correctly most of the 12 selected compounds. 

The first model (Eq. 12) classifies only two lead-compound incorrectly (one of them as 

false positive and the other as false negative) for yielding 83.33% of correct 

classification, while the second model (Eq. 13) classifies three lead-compound incorrectly 

(two of them as false positive and the other as false negative) for yielding 75.00% of 

correct classification. This result is the most important validation for the models 

developed here since it has been able to detect a series of compounds as active from a 

database composed of compounds selected from literature and these chemicals have 

shown the predicted activity.  

The next step in this approach would be the inclusion of these ‘novel’ compounds in 

the training set and the developing of a new discrimination model. This new model can 

be significantly different from the previous one, due to the inclusion of a new structural 

pattern, but it should be able to recognize a greater number of such compounds as 

trichomonacidals. By these ways, the derivation of the classifier model is considered as 

an iterative process, in which novel compounds with novel structural features are 

incorporated into the training set for improving the quality of the models so developed. 

3.2.2. Lead Discovery by Ligand-Based in silico Screening: From Dry Selection to 

Wet Evaluation. 

One of the main objectives of the approach developed here is the selection of 

subsystems from a large group of chemical-organic compounds. A subsystem is 

understood, in general, as a number of compounds formed by a significant variation in a 

given parent structure, which is referred to as the lead compound [46]. The QSAR 

equations found by using the TOMOCOMD-CARDD approach recognize some structural 
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patterns which are not related to the common patterns that appear in active compounds 

already predicted by the models. This strategy permits the identification of novel lead 

compounds having the desired activity, later they need to be synthesized, then tested for 

the pharmacological activity and they finally need to pass the toxicological, 

pharmacodynamical and pharmaceutical tests.  

In order to test the potential of TOMOCOMD-CARDD method and LDA for 

detecting novel antiprotozoan leads, we predicted the biological activity of all the 

chemicals contained in our ‘in-house’ collection of nitrovinyl-furans and pyridinyl 

substituted 7H-indeno[2.1-c]quinoline derivatives which were provided by two of our 

synthesis research teams [113,115-122]. The structures of these compounds are presented 

in Figure 2. 

 All these compounds were initially evaluated with the QSAR models 12 and 13 and 

then they were evaluated in vitro, in order to corroborate the predictions against Tv. The 

results for the classification and the ∆P% values of the compounds in these series are 

summarized in Table 8. At the same time, this table also depicts the in vitro 

antitrichomonal activity of these twenty-one compounds on Tv. 

In general, it was observed a good coincidence between the theoretical predictions 

and the observed activity for both active and inactive compounds. Our trained LDA-

based QSAR models (Eq. 12 and Eq.13) successfully classified 20 out of 21 compounds 

yielding (both) an accuracy of the 95.24%. In these experiments, compounds G-0, G-1, 

UC-245 and CRIS-148 exhibited pronounced cytocidal activities at the concentrations of 

100 µg/ml at 24h and 48h, almost all of them showed cytocidal activity of 100%. 

Compounds G-1 and UC-245 maintained a good trichomonacidal (cytocidal) activity at 
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10µg/ml, although only G-1 maintained a high level of percentage of reduction of T.v at 

concentrations of 10mg/mL at 24h and 48h of 100% in both periods of time. On the 

contrary, chemicals from CRIS-105 to CRIS-153 but CRIS-148 resulted to be inactive at 

all assayed concentrations; coinciding with model predictions. It is remarkable that these 

compounds did not show toxic activity in macrophages cultivations at these 

concentrations (see Table 8). 

Figure 2. Structures of nitrovinyl-furans and pyridinyl substituted 7H-indeno[2,1-
c]quinoline derivatives for lead discovery by ligand-based in silico screening. 
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Table 8. Results of the computational evaluation using LDA-based QSAR models and 
percentages of cytostatic and/or cytocidal activity [brackets] for the three concentrations 
assayed in vitro against Tv. 

Theoretical results  in vitro activity (µg/ml) P

f
P
 

%CA B24hB [%C B24hB] %CA B48hB [%C B48hB] CompoundP

*
P
 

 ClassP

 a
P
 ∆P%P

b
P
 

ClassP

 c
P
 ∆P%P

d
P
 

ClassP

 e
P
 

100 10 1 100 10 1 
G-0 + 61.11 + 46.27 + [100] 50.8 24.5 [100] 12.08 0.8 
G-1 + 77.34 + 99.72 + [100] [100] 22.42 [100] [100] 0 
UC-245 + 62.08 + 97.80 + [100] 33.33 0 [100] [94.18] 6.84 
CRIS 105 - -93.16 - -95.33 - 41.18 12.53 1.79 14.75 4.26 0.00 
CRIS 109 - -94.23 - -94.96 - 90.28 0.00 0.00 93.77 0.00 0.00 
CRIS 110 - -93.19 - -96.38 - 42.28 4.86 0.00 23.61 0.00 0.00 
CRIS 111 - -87.83 - -53.01 - 90.28 13.55 0.00 84.90 0.00 0.00 
CRIS 112 - -85.74 - -64.09 - 84.65 28.39 0.26 85.90 0.00 0.00 
CRIS 116 - -70.66 - -77.55 - 20.23 2.64 0.00 3.82 0.00 0.00 
CRIS 119 - -66.14 - -83.47 - 40.18 0.00 0.00 25.19 0.00 0.00 
CRIS 130 - -70.58 - -79.34 - 74.19 40.18 18.48 95.11 5.34 1.53 
CRIS 131 - -65.10 - -48.22 - 26.69 0.00 0.00 0.00 0.00 0.00 
CRIS 135 - -93.14 - -95.73 - 88.86 7.92 0.00 83.59 1.53 0.00 
CRIS 140 - -94.21 - -95.40 - 17.12 3.30 0.00 13.15 0.00 0.00 
CRIS 141 - -87.79 - -56.27 - 68.17 0.00 0.00 86.81 0.00 0.00 
CRIS 142 - -79.28 - -94.70 - 49.43 0.00 17.11 0.00 0.00 0.00 
CRIS 143 - -82.23 - -94.30 - 59.09 3.42 11.43 43.27 0.00 0.00 
CRIS 147 - -82.28 - -94.21 - 48.67 0.00 0.00 13.45 0.00 0.00 
CRIS 148 - -82.32 - -94.40 + [96.58] 2.66 5.70 [97.93] 0.00 0.00 
CRIS 149 - -84.88 - -93.98 - 8.58 0.00 0.00 0.00 0.00 0.00 
CRIS 153 - -28.13 - -74.22 - 0.00 0.00 0.00 0.00 0.00 0.00 
MTZ + 69.08 + 91.09 + 99.63 99.18 98.19 100 99.72 98.79 

P

*
PThe molecular structures of the compounds represented with codes are shown in Figure 2.P

 a,c
PIn silico 

classification obtained from models Eq. 12 and Eq. 13 using non-stochastic and stochastic bond-type 
quadratic, respectively. P

b,d
PResults for the classification of compounds obtained from models Eq. 12 and 

Eq. 13, correspondingly: ∆P% = [P(Active) - P(Inactive)]x100. P

e
PObserved (experimental activity) 

classification against Tv. P

f
PPharmacological activity of each tested compound, which was added to the 

cultures at doses of 100, 10 and 1µg/ml: %CA B# B = Cytostatic activity B(24 or 48 hours) Band [%C B#B] = Cytocidal 
activity B(24 or 48 hours).  BMTZ = Metronidazole (concentrations for MTZ were 2, 1 and 0.5 mg/ml, 
respectively). 



These last results can be considered as a promising starting point for the future design 

and refinement of novel compounds with higher antitrichomonal activity with low 

toxicity. Although compounds G-1, UC-245, G-0 and CRIS-148 were active at higher 

doses than metronidazole, MTZ (reference drug), this result leaves a door open to a 

virtual variational study of the structure of these compounds in order to improve their 

activity. Besides, these chemicals can be taken as hits, which are amenable for further 

chemical optimization in order to derive the appropriate combination of potency, 

pharmacokinetic properties, toxicity etc., as well as good activity in animal models. 

3.3. Biological in vivo assays of G-1. 

Wistar ovariectomized rats were used in the in vivo experiment of G-1. The results 

are shown in Table 9. The 95% of the rats were infected to the beginning of the 

experiment, higher than previous reports [106].  The product showed 100% of 

effectiveness to the concentration of 0,125%. With two treatments a reduction of 50% in 

the infected animals was observed and with the application of the third treatment infected 

animals were not observed. The MTZ was also used as control in this experiment. With 

the application of the second treatment of MTZ infected rats were not observed. The 

infection controls and exicipient remained infected until the end of the experiment.   

Table 9. Results of the activity of G-1 in Wistar rats inoculated with Tv. 
Diagnostic  / % of infection 

Group Treatment 
1 2 3 4 5 6 7 

I G-1 100 50 10 0 0 0 0 

II Migliol 80 80 80 80 80 80 80 

III Control without treatment 100 100 100 100 100 100 100 

IV Metronidazol 100 20 0 0 0 0 0 

% of total infection 95       
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4. CONCLUDING REMARKS 

Combined features of TOMOCOMD-CARDD MDs and LDA techniques are able of 

generating polynomial QSAR models with rather statistical robustness which are potent 

ligand-based virtual and in silico screening tools capable of identifying drugs with a 

broader spectrum of antiprotozoan activity. Mainly, these biosilico models permit us to 

classify new ‘physical’ or ‘virtual’ chemicals as active or inactive ones in the 

chemotherapy of the trichomoniasis, and they will contribute to a more rational discovery 

of new lead compounds with antitrichomonal activity. In fact, this report showed that 

following this procedure four new chemicals with potentialities (at least in in vitro 

assays) in antitrichomonal therapeutics were found. One of them (G-1) was even a 

promissory drug-like compound in the treatment of this disease in more complex living 

systems (rats). All these compounds possess structural features not seen in known 

trichomonacidals and thus can serve as excellent leads for further optimisation of 

antitrichomonal activity. The identification of this new family, making use of the 

TOMOCOMD-CARDD approach, constitutes an example of how this rational computer-

aided design method can help to reduce cost, and to increase the rate in which NCEs 

progress through the pipeline. 
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