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Abstract: Effective treatment and disinfection of source waters and the safe delivery of potable wa-

ter to customers require a comprehensive understanding of water quality changes from source to 

tap. Prediction of water quality within distribution systems, including disinfectant residual loss and 

by-product generation, has been a subject of applied research since the early 1990′s. In this study 

the currently existing process based bulk decay models were modified by replacing initial chlorine 

concentration parameter with chlorine demand in their equations and the results showed that this 

modification could improve the performance of the models by 38.0%, 28.0%, 23.1% and 33.3% in 

average for First Order Model (FOM), Parallel First Order Model (PFOM), Second Order Model 

(SOM) and Parallel Second Order Model (PSOM), respectively. Furthermore, an online predictive 

method based on a machine learning algorithm was introduced and implemented in this study to 

predict first order chlorine bulk decay rate by feeding water quality parameters as the inputs. In 

addition, a novel methodology was introduced and suggested in this study based on the obtained 

results to be applied in real water distribution system for an optimized online prediction of residual 

chlorine. 
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1. Introduction 

Chlorine is a widely used chemical disinfectant in water treatment plants, and its 

residual concentration in treated water is an important indicator of the effectiveness of 

the treatment process. Accurate prediction of the residual chlorine concentration is essen-

tial for ensuring the safety and quality of treated water, as well as for optimizing the op-

eration of water treatment plants [1,2]. 

Chlorine bulk decay models have been widely studied in the literature as a means of 

predicting the residual chlorine concentration in treated water. These models are based 

on the premise that the concentration of chlorine in water decreases over time due to var-

ious physical, chemical, and biological processes. Many studies have focused on develop-

ing empirical models that describe the relationship between chlorine decay and various 

parameters such as water temperature, pH, and the presence of other chemical species. 

However, these models are often based on limited data and may not be accurate for all 

water systems [3]. 

The development of accurate and reliable chlorine bulk decay models is a challeng-

ing task due to the complexity of the processes involved and the large number of param-

eters that can affect the rate of chlorine decay. Many studies on chlorine bulk decay mod-

eling are based on limited data sets, which may not be representative of all water systems. 

This can lead to models that are not accurate or reliable for all water treatment plants [4]. 
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The rate of chlorine decay is influenced by a large number of parameters, which can have 

complex relationships with each other. This makes it difficult to develop accurate models 

that capture all of these relationships. The relationships between the rate of chlorine decay 

and various parameters are often nonlinear, which makes it challenging to model them 

accurately using traditional methods. Water quality can vary significantly depending on 

the source and treatment processes, which can affect the rate of chlorine decay. The pres-

ence of microorganisms and other biological processes can significantly affect the rate of 

chlorine decay. These processes are difficult to model accurately and can lead to signifi-

cant errors in the prediction of residual chlorine concentration [5]. 

Overall, the development of accurate and reliable chlorine bulk decay models is a 

challenging task due to the complexity of the processes involved and the large number of 

parameters that can affect the rate of chlorine decay. Despite these challenges, the devel-

opment of improved models for predicting residual chlorine concentration is essential for 

ensuring the safety and quality of treated water and optimizing the operation of water 

treatment plants [6]. 

In this study new chlorine decay models were proposed by modifying currently ex-

isting decay models from first order to parallel second order model by introducing a new 

parameter called “Total Chlorine Demand” and were assessed against their accuracy in 

explaining chlorine bulk decay behavior in an attempt to correct the flaws of existing mod-

els. Furthermore, in order to make the predicting chlorine decay model cover expected 

changes in source water, demands, or system operation over the ensuing weeks, months, 

or seasons, the required parameters in kinetics model should be estimated online rather 

than offline measurements in laboratory environment which restricts the models to off-

line use and planning-level analysis. In this regard, a new methodology was used in this 

study to predict bulk decay coefficients based on water quality parameters through an 

analytical process instead of running bulk decay experiments in a laboratory environ-

ment. Accordingly, to cover the effects of water quality variabilities on chlorine bulk de-

cay kinetics, a predictive tool based on machine learning algorithms was used to train a 

model to predict chlorine bulk decay rate coefficients based on water quality parameters 

as the input and kinetic parameters as the output in such a way that the system assigns 

new values for the rates for each water sample with different water quality properties. In 

other words, in this proposed methodology the system automatically updated the values 

for decay rate coefficients based on the changes in water quality parameters in an online 

manner. 

2. Methods 

2.1. Sample Preparation 

Water samples were collected from a portion of Singapore water distribution system 

from different locations within the site, anonymously described by “S” in Figure 1, in or-

der to provide an appropriate representation of water quality throughout the network. 
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Figure 1. Sampling locations in Singapore water distribution network. 

From September 2020 to February 2021, five water sample collection attempts were 

done from seven different locations throughout water distribution system as explained in 

Table 1 and totally 31 samples were collected during this period.  

Table 1. Description of water sample collection dates and locations. 

Date 

Time 

S1 

S2 

S3 

S4 
S5 

S6 
S7 

8/9/2020 
9:00 AM 

(27 °C) 

11:00 AM 

(28 °C) 

2:00 PM 

(28.6 °C) 

4 PM 

(29.2 °C) 

22/9/2020 
9:00 AM 

(27.2 °C) 

10 AM  

(29.9 °C) 

2:00 PM 

(31.2 °C) 

3 PM 

(30.4 °C) 

13/10/2020 
9:00 AM 

(27.0 °C) 

10:00 AM 

(30.3 °C) 

2:00 PM 

(31.3 °C) 

3 PM 

(30.6 °C) 

26/1/2021 
9:40 AM 

(27.5 °C) 

10:20 AM 

(30.0 °C) 
Under maintenance 

2:00 PM 

(30.0 °C) 

9/2/2021 
9:30 AM 

(28.2 °C) 

10:40 AM 

(28.9 °C) 
Under maintenance 

2:20 PM 

(28.9 °C) 

2.2. Water Quality Parameter Measurements 

To achieve a well-defined chlorine decay profile for a particular water sample, selec-

tion of appropriate times for measurement of water quality parameters is crucial [7]. In 

this study the time intervals selected to measure the water quality parameters were 1 h, 2 

h, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h, 96 h, and 168 h after collection time and the details on the 

methods and techniques used to measure these parameters are provided in Table 2. 

Table 2. Measured water quality parameters and their corresponding measurement methods and 

instruments. 

Parameters Unit Method/Instrument 

Total Residual Chlorine (TRC) mg/L Cl2 Method 867 (DPD method) 

NH2Cl mg/L Cl2 Method 10171 (Indophenol method) 

TOC mg/L TOC analyzer (Shimadzu TOC-L) 

pH / Temperature No unit/℃ pH meter (Horiba Scientific pH1100) 
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UV254 cm−1 HACH Spectrophotometer (DR6000) 

Total NH3 mg/L NH3–N HACH Spectrophotometer (DR6000) 

Free NH3 mg/L NH3–N HACH Spectrophotometer (DR6000) 

fDOM 
a.u. 

Ex 365 Em 480 

Fluorescence Spectrophotometer (Ag-

ilent Technologies Cary Eclipse) 

2.3. Modified Kinetic Bulk Decay Models 

Given to the fact that each water sample based on its quality indices needs a specific 

amount of chlorine concentration in order to react with all of the organic and inorganic 

reactants existing in this water sample, in this case initial chlorine concentration (Cl0) is 

replaced by a new variable called initial Total Chlorine Demand (TCD0), which is a portion 

of initial chlorine concentration [8]. As a result, previous kinetic equations were modified 

accordingly and are reported in Table 3. 

Table 3. Original versus modified equations of existing chlorine decay models. 

Models Original Equation Modified Equation Description on New Parameters 

First order Model 

(FOM) 
Cl(t) = Cl0 × e−k× t  

Cl(t) = 𝑇𝐶𝐷0 ×  e−kd× t +
(Cl0 − 𝑇𝐶𝐷0)  

𝑇𝐶𝐷0: Initial Total Chlorine demand  

Kd: First Order decay rate associated with 

initial total chlorine demand 

Parallel First order 

Model (PFOM) 

Cl(t) = f(Cl0, t) = Cl0 ×

x × e−k1×t + Cl0 × (1 −

x) × e−k2×t  

Cl(t) = 𝑇𝐶𝐷0 × x × ek1d×t +
𝑇𝐶𝐷0 × (1 − x)ek2d×t  +
(Cl0 − 𝑇𝐶𝐷0)  

K1d: First order fast reaction rate constant of 

the chlorine decay associated with TCD0 × x 

K2d: First order slow reaction rate constant 

of the chlorine decay associated with TCD0 

× (1 − x) 

Second Order Model 

(SOM) 

CCl(t) =

 
CCl0−CA0  

1− 
CA0
CCl0

 × e
−(CCl0

−CA0
) × k × t

  

Cl(t) =

 
𝑇𝐶𝐷0−CA0  

1− 
CA0

𝑇𝐶𝐷0
 × e

−(𝑇𝐶𝐷0−CA0
) × kd × t

+

(Cl0 − 𝑇𝐶𝐷0)  

Kd: Second order decay rate associated with 

initial total chlorine demand (TCD0) and 

initial notional reactant (CA0
) 

Parallel Second Order 

Model (PSOM) 

Cl(t) =

 
Cl0Z (1−R1)

1−  R1 × e−(1−R1) × k1 × t +

 
Cl0 (1−Z)(1−R2)

1−  R2 × e−(1−R2) × k2 × t  

Cl(t) =

 
𝑇𝐶𝐷0Z (1−R1)

1−  R1 × e−(1−R1) × kd1 × t +

 
𝑇𝐶𝐷0 (1−Z)(1−R2)

1−  R2 × e−(1−R2) × kd2 × t +

(Cl0 − 𝑇𝐶𝐷0)  

kd1: Second order fast reaction rate constant 

of the chlorine decay associated with TCD0 

× Z and (1 − R1) 

kd2: Second order slow reaction rate 

constant of the chlorine decay associated 

with TCD0 × (1 − Z) and (1 − R2) 

2.4. Responsive Kinetic Model 

A machine learning based predictive tool was introduced and developed in this 

study based on water quality parameters as the input and kinetic parameters as the out-

put. A schematic of this predictive model developed in this study using Gaussian Process 

Regression (GPR) algorithm is provided in Figure 2. 
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Figure 2. Machine Learning (ML) model set-up for chlorine bulk decay predictions. 

3. Results and Discussion  

Figure 3 presents the MSE values graphically for all nominated models and their 

modified versions. As can be seen from Figure 3, PSOM and PFOM were ranked first and 

second, respectively amongst all nominated models. One of the reasons that PFOM and 

PSOM generated more accurate results compared to FOM and SOM is that the parallel 

first and second order models (PFOM and PSOM) contain more parameters that need to 

be estimated and therefore have more flexibility to fit the data. Although PSOM was 

ranked better than PFOM with regards to accuracy of the predicted chlorine residuals, it 

should be noted that PSOM contains five parameters compared to only three parameters 

of the PFOM and thus it can be said that PSOM produces more accurate results than 

PFOM due to having more model parameters. In addition, by applying the proposed 

modification in this study on all four nominated models, the MSE values were decreased 

by 38.0%, 28.0%, 23.1%, and 33.3% for FOM, PFOM, SOM and PSOM, respectively. 

Moreover, as noted from the results, adding only one additional parameter (TCD0) 

to the general first order model increased the accuracy of the model to the extent that its 

performance was even better than all previously existing models with higher complexity 

such as PFOM, SOM and PSOM. Therefore, it is concluded that MFOM is the most accu-

rate process-based chlorine decay model for modelling chlorine decay in bulk water with 

the least complexity in converging process. It is generally true that models with more pa-

rameters can fit a given set of data more accurately, but this comes at the cost of increased 

complexity and a greater risk of overfitting. Overfitting occurs when a model fits the train-

ing data too well, but does not generalize well to new, unseen data. This can lead to poor 

performance on out-of-sample data. In the case of kinetic chlorine bulk decay models, a 

model with a higher number of parameters may be more accurate at fitting the data used 

to train the model, but this may not necessarily lead to better performance on new, unseen 

data. This is because the additional parameters may be fitting to noise or random fluctu-

ations in the training data, rather than capturing the underlying trends and relationships. 

Therefore, while more complex models may be more accurate on the training data, they 

may not be more practical or reliable for predicting the behaviour of the system on new, 

unseen data. In general, it is important to carefully consider the trade-off between model 

complexity and performance when choosing a model for a particular application. 
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Figure 3. The MSE values for all nominated models and their modified versions. 

The obtained results from the ML model were used in fitting FOM equation on its 

corresponding test set that were not involved in training the model to examine the perfor-

mance of this proposed responsive bulk decay model in predicting TRC decay. The plots 

of raw TRC decay data and corresponding fits of original FOM as well as the responsive 

FOM for 11 sets of data that were separated before training the ML model are shown in 

Figure 4. As can be seen, for all datasets the predicted-FOM after the optimization showed 

closer fits to the original FOM comparing to the one before the optimization process. Fur-

thermore, the results showed that the prediction of the first order rate coefficients by the 

ML model after optimization was acceptable in all of the cases except in a few circum-

stances where the distance between the fitted line using the original FOM and also the one 

using optimized-predicted-FOM was higher than expected probably due to the limited 

amount of data for training the model, the presence of other affecting factors on first order 

decay rate variations which were not considered in this study, as well as the high sensi-

tivity of first order bulk decay kinetic model to minor errors in predicted rate coefficients. 

 

Figure 4. The plots of raw TRC decay data and corresponding fits of original FOM as well as the 

responsive FOM for 11 sets of data that were separated before training the ML model. 

Based on the results obtained in previous sections, this part of the study provides an 

implementation plan in real water distribution network that can potentially fill the gap in 

disinfection decay monitoring by developing a predictive tool that integrates various real-

time water quality sensors, supervisory control and data acquisition (SCADA) systems, 

and hydraulic and chemical kinetics models. Having the overall chlorine decay kinetic 

parameter is not enough to estimate the residual chlorine concentration in different loca-

tions of the distribution system over time. Other requisites like a suitable and calibrated 

hydraulic model are needed to predict the chlorine concentration versus time in different 
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locations. In this regard, it was proposed here to consider each water flow as a segment 

inside of which the chlorine was reacting with organic and inorganic matters based on the 

chemical kinetic equations. This water segment was also supposed to flow throughout the 

distribution system with an average velocity obtained from the calibrated hydraulic 

model. The kinetic parameters in above mentioned equations can be predicted by ML 

model in such a way that once a new water flow with different properties flows in the 

distribution system, new values are assigned for the kinetics parameters as the input var-

iables into the ML model would change. Hence, by the combination of a calibrated hy-

draulic model and a suitable kinetic model, as well as an accurate predictive model (ML 

model), the concentration of chlorine can be estimated in different locations of the water 

distribution system versus time. In Figure 5, a summary of this proposed methodology is 

presented. 

 

Figure 5. A summary of proposed methodology for online TRC prediction in water distribution 

system. 

4. Conclusions 

In this study the currently existing process based bulk decay models were modified 

by replacing initial chlorine concentration parameter with Total Chlorine Demand in their 

equations and the results showed that this modification could improve the performance 

of the models by 38.0%, 28.0%, 23.1% and 33.3% in average for FOM, PFOM, SOM and 

PSOM, respectively. In addition, it was proven that the chlorine decay prediction in water 

distribution system can be modified and robust to be used as an online tool for predicting 

residual chlorine in different locations of distribution system over time rather than to be 

restricted by off-line use and planning-level analysis. In this regard, an online predictive 

method based on a machine learning algorithm was introduced and implemented in this 

study to predict first order chlorine bulk decay rate by feeding water quality parameters 

as the inputs. Hence, a GPR model was trained and used to predict the kinetic parameter 

in FOM, and the results showed that although the accuracy of predictions for the test set 

was high for most of the cases, the high sensitivity of the FOM to its kinetic parameter 

(first order decay rate coefficient) resulted in high MSE values in some of the TRC predic-

tions. However, the high correlation coefficients between the predicted and actual TRC 

values represented the fact that the model could properly identify the substantial process 

behind TRC prediction based on water quality parameters. In addition, a novel method-

ology was introduced and suggested in this study based on the obtained results to be 

applied in real water distribution system for an optimized online prediction of residual 

chlorine. By incorporating the variability of source natural organic matter, along with op-

erational actions and water demands, the proposed approach seeks to address a research 
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challenge to develop high fidelity and robust water quality predictions—well suited to 

providing operational decision support for optimized distribution system management. 
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