

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

26

27

28

Proceeding paper In vivo evidence of blue-LED-light photobiomodulation *

Giada Magni ¹, Francesca Tatini ¹, Michele Rossi¹, Gaetano de Siena ¹, Riccardo Cicchi ^{2–3}, Francesco S Pavone ^{3–4}, Stefano Bacci ^{1–5–6} and Francesca Rossi ^{1*}

- ¹ Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata "Nello Carrara", (CNR-IFAC), 50019 Sesto Fiorentino, Florence and Italy; g.magni@ifac.cnr.it; f.tatini@ifac.cnr.it;
- ² Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, (CNR-INO), 50019 Sesto Fiorentino, Florence, Italy; riccardo.cicchi@ino.cnr.it;
- ³ European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Florence, Italy; cicchi@lens.unifi.it; pavone@lens.unifi.it;
- ⁴ Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Florence, Italy; francesco.pavone@unifi.it
- ⁵ Dipartimento di Biologia, Università di Firenze, 50019 Sesto Fiorentino, Florence, Italy; stefano.bacci@unifi.it;
- ⁶ Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- * Correspondence: f.rossi@ifac.cnr.it
- + Presented at the 2nd International Electronic Conference on Biomedicines, online, 01-31 March 2023.

Abstract: A study investigated the effects of blue LED light (410-430 nm) on wound healing in mice19with superficial and full-thickness skin wounds. The wounds were treated with blue LED light (20.620J/cm², 30 s), and biopsies were collected over 6 days. Results showed modulation of cytokine release,21increased number of granulocytes and mast cells, increased density of vessels with mast cells ex-22pressing platelet-derived growth factor, and improved collagen deposition compared to untreated23wounds. The study concluded that blue light leads to faster and more effective wound healing and24improved skin morphology.25

Keywords: photobiomodulation; wound healing; blue LED light; in vivo model

1. Introduction

Photobiomodulation, also known as low-level light therapy, is a growing field of re-29 search that explores the use of light energy to induce therapeutic effects in living tissue. 30 This non-invasive therapy involves applying low-intensity light in the visible to the near-31 infrared range to target specific cells or tissues [1]. Photobiomodulation treats various 32 conditions, including pain, wound healing, and neurodegenerative diseases. It is also be-33 ing studied for its potential to improve skin health, increase joint mobility, and enhance 34 athletic performance. Photobiomodulation can be delivered using various devices, in-35 cluding light-emitting diodes (LEDs), laser therapy devices, and infrared lamps [2]. The 36 exact mechanisms of photobiomodulation are still not fully understood, but the involve-37 ment of the synthesis of adenosine triphosphate (ATP), mitochondria and action on spe-38 cific cellular targets appears evident [3]. Current research suggests that the absorption of 39 light energy by specific cellular components triggers various biological responses [4]. Pho-40tobiomodulation has been shown to activate several key cellular processes, including i) 41 modulation of energy production, where light energy is absorbed by cellular mitochon-42 dria, leading to an increase in ATP synthesis; ii) reduced oxidative stress by increasing the 43 antioxidants and reducing the production of reactive oxygen species (ROS); iii) stimulated 44 cell proliferation and promote tissue repair, making it practical for treating conditions 45 such as wounds and neurodegenerative diseases [5]. 46

Citation: Magni, G.; Tatini, F.; Rossi, M.; de Siena, G.; Cicchi, R.; Pavone, F.S.; Bacci, S.; Rossi, F. In vivo evidence of blue-LED-light photobiomodulation. **2023**, *3*, x. https://doi.org/10.3390/xxxx Published: 29 March

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

In our previous research, we studied the effects of blue light in acute wounds, 24 1 hours after the treatment. Our results showed that treated wounds (TW) had an increase 2 in inflammatory cells, starting 1 hour after injury till 6 hours later. Granulocytes, mast 3 cells (MC), and endothelial cells showed an increase in the timeframe between 6 to 9 hours 4 in TW, while in untreated wounds (UTW) the increase occurred later (12 to 24 hours). 5 Additionally, the number of M2 macrophages increased earlier in TW. Dendritic cells 6 (DC) played a crucial role in the organisation of the inflammatory infiltrate and increased 7 after 6 hours, while decreased after 24 hours in NTW. The number of M2 macrophages 8 was almost constant in TW. Plasmacytoid cells (pDC) modulate Treg lymphocytes, which 9 are involved in tolerance and suppressing excessive immune responses [6,7]. We found 10 that pDC cells increased at 9 hours in TW, but remained unchanged in NTW. However, 11 TW and NTW showed a significant decrease in pDC cells 12 hours after injury [8]. In 12 another study, 6 days after the treatment with blue light MC led to a well-coordinated 13 cellular response, including an early inflammatory reaction, angiogenesis due to Tumor 14 Necrosis Factor–alpha (TNF- α) secretion [9], and fibroblasts activation [10]. 15

Here, we started studying the effect of blue LED light on full-thickness wound, which 16 represents a model of chronic wound. Numerous clinical data support the hypothesis that 17 chronic wounds manifest an excessive inflammatory phase, with high levels of inflamma-18 tory infiltrate cells, such as neutrophils and macrophages. The inflammatory environment 19 stimulates cytokines, ROS and proteases and inhibits factors such as Vascular Endothelial 20 Growth Factor (VEGF) and basic Fibroblasts Growth Factor (bFGF). The consequences 21 lead to a degradation of the extracellular matrix (ECM) and therefore the impossibility of 22 progression in the subsequent stages of healing, proliferation and remodelling [11]. Based 23 on our previous findings regarding the modulation of the inflammatory phase in the acute 24 wound [10,12], here we analysed cytokine release and growth factors on chronic wounds. 25

2. Materials and Methods

2.1. Animal model

Sixty-three CD1 male mice (15 and 20 g, Envigo, Udine, Italy) were used. The animals 28 were fed with a standard pellet diet and housed in static filter top cages under a 12 hours 29 light/dark cycle and controlled temperature (24°C). The experiments were carried out at 30 the Centre for Laboratory Animal Housing and Experimentation, University of Florence, 31 Italy. In each mouse, one or two full-thickness wounds were performed using a biopsy 32 punch (4 mm in diameter). Irradiation with blue LED light was performed immediately 33 after wound induction: one treatment was performed per animal (410 to 430 nm, 20.6 34 J/cm², 30 s treatment time). At 1 - 3 - 6 - 9 - 24 hours and finally 7 days after the treatment, 35 the animals were sacrificed by CO₂ inhalation. All experimental procedures were per-36 formed in accordance with the European Community guidelines for animal care 37 (86/609/EEC), and written consent was duly obtained from the Italian Ministry of Health 38 (791/2016-PR). 39

2.2. Samples preparation for Multiparametric ELISA tests

After tissue excision, samples were dissolved with a manual homogenizer. The pro-41 tein content was assessed by comparison with the albumin calibration curve obtained by 42 Bicinchoninic acidic (BCA protein assay, Sigma-Aldrich, Milan, Italy). The samples were 43 then diluted with radioimmunoprecipitation assay buffer (RIPA buffer) so prepared: 10 44 mM Tris-HCl (tris(hydroxymethyl)aminomethane), 1 Mm EDTA (Ethylenediaminetet-45 raacetic acid), 0.5 mM EGTA (egtazic acid), 1% Triton X-100, 0.1% SDS, 140 mM NaCl 46 (Sodium Chloride). The RIPA buffer was used to obtain a different total protein content. 47 The absorbance at 570 nm was read using a reference wavelength at 630 nm and was eval-48uated using an automatic microplate absorbance reader (LT-4000 Labtech, Heathfield, 49 East Sussex, England). Samples were then placed in glass slides and sent to Raybiotech 50

26 27

(GA, USA) service for multiparametric ELISA essay. Results were analyzed for means and SD; the Kolmogorov-Smirnov test was then performed.

3. Results

3.1. Modulation of cytokines

ELISA analysis revealed a differential modulation of signal molecules involved in the inflam-5 matory pathways underlying the healing process. Figure 1 A,B shows an overall increase in TNF-6 α and Epidermal Growth Factor (EGF) in TW, except for the first hour after wound induction. At 7 the same time, Matrix MetalloProteinase-2 (MMP-2) and pro-Matrix MetalloProteinase-9 (pro-8 MMP-9) (figure 1 C,D) remained constant or slightly augmented. 9

Figure 1. ELISA test results in samples from TW and NTW in a mice model: TNF- α (**a**), EGF (**b**), 11 MMP-2 (**c**), and pro-MMP-9 (**d**) trends. Data are expressed as mean ± SD. Significant p-values: *p < 12 0.1; **p < 0.05; ***p < 0.01 vs. NTW at the same time point. 13

During the first 24 h after the treatment, we observed a modulation of the Vascular 14 Endothelial Growth Factor-A isoform (VEGF-A) level, as shown in Figure 2. During the 15 first hours after the wound, the VEGF-A level seemed not to be affected by the treatment, 16 but 9 hours later, an increase showed up. 17

2

1

4

Figure 2. ELISA test results in samples from TW and NTW in a mice model: VEGF-A levels over 2 time. Significant *p*-values for VEGF-A data were: p < 0.1 at 6 h and 9 h, p < 0.05 at 24 h. Data are 3 expressed as mean \pm SD. Significant *p*-values: *p < 0.1; **p < 0.05; ***p < 0.01 vs. NTW at the same 4 5 time point.

4. Discussion

Wound healing is a complex and dynamic process. A variety of cell types are in-7 volved, orchestrated by several growth factors and cytokines. Blue LED light is success-8 fully used in wound healing, notwithstanding its mechanism of action is still unclear. In 9 our previous work, we demonstrated the beneficial effects of blue LED light irradiation in 10 the healing of superficial abrasions in animal models [10,12,13]. In particular, we studied 11 cell inflammatory infiltrate and new tissue formation. Here, our attention was focused on 12 specific cytokines and growth factors involved in the healing process in chronic wounds. 13

ELISA assay shows that the blue LED light also affects pro-MMP-9 and MMP-2. We 14 pointed out that in the TW, both markers quickly increase significantly after the wound 15 induction (1 hour) while reversing at 3 hours (significantly only for pro-MMP -9), showing 16 a significant increase in NTW. After 24 h, only the MMP-2 appears significantly increased 17 in the TW, while after 7 days, both markers are significantly expressed in the TW, when 18 compared to the NTW. The involvement of MMP-2 and MMP-9 in wound healing has 19 been demonstrated [14]. The MMP-2 is expressed at the edge of the acute wounds. More-20 over, it is correlated with the appearance of laminin-332 and the increase in keratinocyte 21 migration [15]. Furthermore, MMP-9 knockout mice display a delay in wound closure 22 [16], demonstrating that MMP-9 is necessary for the final phase of the wound healing 23 process. Accordingly with the literature, our findings indicate that both the pro-MMP-9 24 and MMP-2 levels are increased at the initial and in the final stage of the wound healing 25 process. We suppose that at early times after the wound induction, the blue LED light 26 induces an increase in matrix degradation to prepare the wound bed for new collagen 27 deposition. In contrast, at a later time in the healing process, this increase may become an 28 indicator of the angiogenetic process and the closure of the wound. Both MMP-2 and 29 MMP-9 play a role in regulating angiogenesis during wound healing through the activa-30 tion of proangiogenic cytokines, including TNF- α [17–19]. TNF- α is a cytokine involved 31 in acute inflammation, known to be produced by several immune cells, primarily by mac-32 rophages, but also by neutrophils and mast cells. As demonstrated in our previous work, 33 an increase in the TNF- α level in treated tissues indicates an activation of the inflamma-34 tory cells [12]. Surprisingly, we found that blue LED light reduces the levels of VEGF-A 35 in chronic wounds. We suppose these effects may be linked to an accelerating inflamma-36 tion in TW compared to the NTW and different time courses of these growth factors dur-37 ing our observations. VEGF affects blood vessel formation and might be enhanced by the 38

1

treatment, consistently observing a better skin morphology in the later phases [10,20]. Obviously, the considerations made are only preliminary. Experiments relating to the responses of individual cellular components of the cellular infiltrate and angiogenesis are currently being carried out in the laboratory. Globally, no evidence was pointed out in these experiments concerning the cross-talk between TW and NTW in the same animal. 5

The beneficial effects of blue light, especially in dermatology and wound healing, are indisputable. However, further experiments are necessary to better understand the mechanism behind the light action. Anywhere, the proposed method might provide a helpful approach in skin wound management. 9

Author Contributions: conceptualization, F.R., S.B., F.T., and F.P.; methodology, S.B., F.T., G.S., and10R.C.; validation, G.M., F.T.; formal analysis, M.R.; investigation, S.B., F.T., G.M. and F.R.; resources,11F.R., S.B.; data curation, F.R., G.M.; writing-original draft preparation, G.M.; writing--review and12editing, F.R.13

Funding: This research was funded by EmoLED s.r.l, and Fondazione Cassa di Risparmio (grant n. 14 2017/0771) and University of Florence. 15

Institutional Review Board Statement: The animal study protocol was approved by the Institu-
tional Review Board of the Italian Ministry of Health (protocol code 791/2016-PR).161717

Data Availability Statement: Data are available to the corresponding author upon reasonable request. 18

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the20design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-21script; or in the decision to publish the results.22

References

1.	Tsai: S.R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B. 2017, 170,	24
	197–207, doi:10.1016/J.JPHOTOBIOL.2017.04.014.	25
2.	Heiskanen, V.; Hamblin, M.R. Photobiomodulation: Lasers vs. Light Emitting Diodes? Photochem. Photobiol. Sci. 2018, 17, 1003,	26
	doi:10.1039/C8PP00176F.	27
3.	Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199,	28
	doi:10.1111/PHP.12864.	29
4.	Bikmulina, P.; Kosheleva, N.; Shpichka, A.; Yusupov, V.; Gogvadze, V.; Rochev, Y.; Timashev, P. Photobiomodulation in 3D	30
	tissue engineering. J. Biomed. Opt. 2022, 27, 90901–90902, doi:10.1117/1.JBO.27.9.090901.	31
5.	Bathini, M.; Raghushaker, C.R.; Mahato, K.K. The Molecular Mechanisms of Action of Photobiomodulation Against	32
	Neurodegenerative Diseases: A Systematic Review. Cell. Mol. Neurobiol. 2022, 42, 955, doi:10.1007/S10571-020-01016-9.	33
6.	Colonna, M.; Trinchieri, G.; Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 2004 512 2004, 5, 1219–1226,	34
	doi:10.1038/ni1141.	35
7.	Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T cells and immune tolerance. Cell 2008, 133, 775–787,	36
	doi:10.1016/J.CELL.2008.05.009.	37
8.	Magni, G.; Rossi, F.; Tatini, F.; Cicchi, R.; Cavigli, L.; Bacci, S.; Alfieri, D.; Tripodi, C.; Targetti, L.; De Siena, G.; et al. Blue LED	38
	treatment of superficial abrasions: in vivo experimental evidence of wound healing improvement.	39
	https://doi.org/10.1117/12.2307397 2018, 10685, 54–59, doi:10.1117/12.2307397.	40
9.	Wang, R.; Yin, X.; Zhang, H.; Wang, J.; Chen, L.; Chen, J.; Han, X.; Xiang, Z.; Li, D. Effects of a Moderately Lower Temperature	41
	on the Proliferation and Degranulation of Rat Mast Cells. J. Immunol. Res. 2016, 2016, doi:10.1155/2016/8439594.	42
10.	Magni, G.; Tatini, F.; Siena, G. De; Pavone, F.S.; Alfieri, D.; Cicchi, R.; Rossi, M.; Murciano, N.; Paroli, G.; Vannucci, C.; et al.	43
	Blue-LED-Light Photobiomodulation of Inflammatory Responses and New Tissue Formation in Mouse-Skin Wounds. Life	44
	(Basel, Switzerland) 2022 , 12, doi:10.3390/LIFE12101564.	45

- Remoué, N.; Bonod, C.; Fromy, B.; Sigaudo-Roussel, D. Animal models in chronic wound healing research: for innovations 1 and emerging technologies in wound care. *Innov. Emerg. Technol. Wound Care* 2020, 197–224, doi:10.1016/B978-0-12-815028-3.00012-2.
- Magni, G.; Tatini, F.; Bacci, S.; Paroli, G.; De Siena, G.; Cicchi, R.; Pavone, F.S.; Pini, R.; Rossi, F. Blue LED light modulates 4 inflammatory infiltrate and improves the healing of superficial wounds. *Photodermatol. Photoimmunol. Photomed.* 2020, 36, 5 166–168, doi:10.1111/phpp.12527.
- Cicchi, R.; Rossi, F.; Alfieri, D.; Bacci, S.; Tatini, F.; De Siena, G.; Paroli, G.; Pini, R.; Pavone, F.S. Observation of an improved 7 healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. *J. Biophotonics* 2016, 9, 645– 8 655, doi:10.1002/JBIO.201500191.
- Patel, G.K. The role of nutrition in the management of lower extremity wounds. *Int. J. Low. Extrem. Wounds* 2005, *4*, 12–22, 10 doi:10.1177/1534734605274574.
- Ladwig, G.P.; Robson, M.C.; Liu, R.; Kuhn, M.A.; Muir, D.F.; Schultz, G.S. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. *Wound Repair Regen.* 2002, *10*, 26–37, doi:10.1046/j.1524-475X.2002.10903.x.
- Butte, A.J.; Dzau, V.J.; Glueck, S.B. Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues". *Physiol. Genomics* 2001, 7, 95–96, doi:10.1152/physiolgenomics.2001.7.2.95.
- Mirastschijski, U.; Lupše, B.; Maedler, K.; Sarma, B.; Radtke, A.; Belge, G.; Dorsch, M.; Wedekind, D.; McCawley, L.J.; Boehm,
 G.; et al. Matrix metalloproteinase-3 is key effector of TNF-α-induced collagen degradation in skin. *Int. J. Mol. Sci.* 2019, 20,
 doi:10.3390/ijms20205234.
- Yen, Y.H.; Pu, C.M.; Liu, C.W.; Chen, Y.C.; Chen, Y.C.; Liang, C.J.; Hsieh, J.H.; Huang, H.F.; Chen, Y.L. Curcumin accelerates
 cutaneous wound healing via multiple biological actions: The involvement of TNF-*α*, MMP-9, *α*-SMA, and collagen. *Int. Wound J.* 2018, *15*, 605–617, doi:10.1111/iwj.12904.
- Frankova, J;, Diamantova, D.; Vrbkova, J; Ulrichova, J. Influence of hydrogencalcium salts of oxidized cellulose on MMP-2, 23
 MMP-9 and TNF-α production and wound healing in non-healing wounds PubMed. *Acta Dermatovenerol Croat* 2013, 4, 219–24
 223, doi:2013;21(4):219-23.
- 20. Cicchi, R.; Rossi, F.; Alfieri, D.; Bacci, S.; Tatini, F.; De Siena, G.; Paroli, G.; Pini, R.; Pavone, F.S. Observation of an improved 26 healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. *J. Biophotonics* 2016, *9*, 645– 27 655, doi:10.1002/jbio.201500191.

Disclaimer/