

Proceeding Paper

MDPI

Review of Research in Developing Hydrogels With Insulin to Promote Wound Healing⁺

Aneta Ostróżka-Cieślik *, Marcin Przybyła, Weronika Wójcik, Klaudia Birówka, Marta Majczyna and Barbara Dolińska

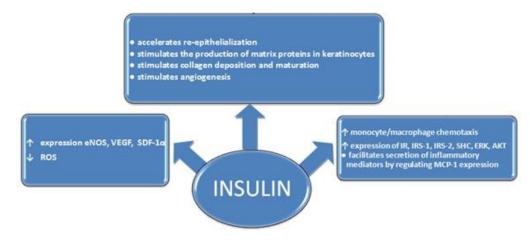
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland; s79922@365.sum.edu.pl (M.P.); s77725@365.sum.edu.pl (W.W.); s77734@365.sum.edu.pl (K.B.); s75900@365.sum.edu.pl (M.M.); bdolinska@sum.edu.pl (B.D.)

- * Correspondence: aostrozka@sum.edu.pl
- + Presented at the 2nd International Electronic Conference on Biomedicines, 1–31 March 2023; Available online: https://ecb2023.sciforum.net.

Abstract: Insulin affect wound healing by reducing inflammation, regulating oxidative reactions, and increasing collagen deposition. Despite the many benefits of insulin, there is still no topical preparation on the skin on the market. The aim of this study was to review the literature on the development of a hydrogel formulation of insulin to promote wound healing. An analysis of papers published between 2000 and 2022 was carried out. Embase, Medline, PubMed, and Cochrane Library databases were used. Hydrogels may provide a starting point for developing new or improving the efficacy of designed epidermal forms of insulin. The hydrogels used allow efficient delivery of the peptide into the wound environment.

Keywords: hydrogel; polymers; insulin; topical; diabetic ulcers; wound healing; chronic wounds

1. Introduction


Insulin (INS) is a peptide hormone that has many physiological functions and, in particular, is involved in the regulation of blood glucose levels. The presence of insulin receptors in the keratinocytes and fibroblasts of the epidermis has been confirmed [1]. It has been found to affect wound healing by reducing inflammation, regulating oxidative reactions, and increasing collagen deposition [2]. Topical application of insulin to skin wounds stimulates the migration and proliferation of fibroblasts, endothelial cells, and the production of extracellular matrix proteins. Furthermore, insulin stimulates the migration of keratinocytes in a dose-dependent manner by activating a transcription nuclear factor-kappa B (NF- κ B) [3–6]. The hormone has been found to promote the closure of wound edges by activating the ERK1/2 and PI3K signaling [7]. The effect of insulin on accelerated wound healing involves increased expression of the integrin receptors laminin (α 3 β 1) in keratinocytes as well as an increase in the levels of LN332 (Laminin 332) [6]. INS prevents cell apoptosis induced by inflammatory processes and promotes angiogenesis (development of new blood vessels) by stimulating the expression of VEGF through AKT signaling [8]. It regulates inflammatory responses in the wound by inducing advanced infiltration and resolution of macrophages [9]. In preclinical studies, topical administration of insulin as a solution or ointment was found to have no effect on blood glucose levels [10]. Figure 1 shows the therapeutic potential of insulin in the treatment of chronic and acute skin wounds [11–17].

Citation: Ostróżka-Cieślik, A.; Przybyła, M.; Wójcik, W.; Birówka, K.; Majczyna, M.; Dolińska, B. Review of Research in Developing Hydrogels With Insulin to Promote Wound Healing. *Med. Sci. Forum* 2023, 3, x.

https://doi.org/10.3390/xxxxx Published: 29 March 2023

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

Figure 1. Therapeutic potential of insulin in the treatment of chronic skin wounds. e-NOS, endothelial nitric oxide synthase; VEGF, vascular epidermal growth factor; SDF-1 α , stromal cell-derived factor-1 α ; ROS, reactive oxygen species; IR, insulin receptor; IRS-1, insulin receptor substrate-1; IRS-2, insulin receptor substrate-2; SHC, Src homology 2/ α -collagen; ERK, extracellular signal-regulated protein kinase; AKT, serine-threonine kinase; MCP-1, monocyte chemotactic protein-1.

Despite the many benefits of insulin on wound healing, still no preparation of insulin has been marketed. The problem is the lack of stability of this peptide in the wound bed. The presence of proteases in the wound environment deactivates the hormone. Research efforts undertaken in recent years to develop a topical form of insulin have focused on designing an effective carrier to improve the stability of the peptide drug.

The aim of this study was to review the literature on the development of a hydrogel formulation of insulin to promote wound healing and to identify the benefits of this carrier.

2. Materials and Methods

An analysis of papers published between 2000 and 2022 was performed. Embase, Medline, PubMed, and Cochrane Library databases were used. The following keywords were used: hydrogel, polymers, insulin, topical, diabetic ulcers, wound healing, and chronic wounds. The search procedure was simplified by using the "AND" operator. Conference abstracts and non-English language articles were omitted. 12 publications met the search criteria.

3. Results and Discussion

Wound healing is a complex and dynamic biological process that involves the repair of damaged cellular and tissue structures. It proceeds through several phases such as hemostasis, inflammation, angiogenesis, growth, re-epithelialisation, and re-modeling [18]. The duration of each phase depends on the type of wound, microbiological, immunological, and physiological factors and the treatment used [19]. Currently, many preclinical and clinical studies are directed toward developing therapies that accelerate wound healing. Recently, a number of studies have been published confirming the efficacy of insulin in the treatment of chronic wounds, a few of which involve the design of polymeric hydrogels for topical application. Hydrogels can provide a starting point for developing new or improving the efficacy of engineered topical forms of insulin. They exhibit a number of favorable characteristics: low cost and ease of preparation, ease of application, ability to retain significant amounts of water or biological fluids in the matrix, biocompatibility, ability to mimic the natural physical properties of tissues, ability to accumulate nano- and micro-forms of the drug in their structure, and efficient release of the active substance [20]. The use of hydrogels as an insulin carrier provides a moist environment in the wound area, protection against infection, and tissue regeneration [21]. Table 1 includes research work on the development of a hydrogel preparation with insulin.

Table 1. Strategies used to incorporate the insulin into the hydrogel.

Author, Year of Publication	Dosage Insulin	Hydrogel Carrier/Insulin Form	Research Model	Effects of the Insulin Preparation
Dhall et al. 2015 [13]	0.04 mg/cm ²	alginate gels; insulin—loaded PLGA micropar- ticles	female adult Sprague- Dawley rats; burn wound model	accelerated healing via a decrease in oxidative stress and tissue damage, early recruitment of neutrophils, management of inflammatory cells, enhanced angiogenesis, and proper collagen dep- osition and maturation
Cai et al. 2016 [22]	14.2 mg	glycerol/PVA hydrogel	in vitro: 6-well plate in vivo: male Wistar dia- betic rats;	addition of glycerol reduced the swelling ratio and hardness of the hydrogel, and enhanced the release of insulin in vitro and in vivo; glycerol disrupted the crystallite structure of PVA molecules while forming crosslinked structures between them, thereby promoting insulin release; insulin-loaded PVA hydrogel film exhibited a hy- poglycemic effect in diabetic rats over 10 days
Besson et al. 2017 [11]	50 IU	Carbopol 940 gel; insulin com- plexed with 2- hydroxypropyl- β-cyclodextrin (HPβCD-INS)	excisional wounds in the skin of rats; chronic wound	Formulations: showed no cytotoxic or irritative effects; prolonged the proliferation and migration of keratinocytes; increased deposition of type I and III collagen fi- bers
Abdelkader et al. 2018 [23]		PVA-borate hy- drogel; Insulin—loaded PLGA nanoparti- cles	skin of rats; diabetic and healthy rats	in non-diabetic rats, there was no significant dif- ference between healing observed in control and wounds treated with free insulin; in diabetic rats insulin induced significant im- provement in wound healing; histological images of diabetic wounds: reduction in the inflammatory process, increased angiogene- sis, formation of granulation tissue, completely re- constructed epidermis and collagen deposition
Dawoud et al. 2019 [24]	20 mg/g (2% <i>w/w</i>)	chitosan gel; insulin—loaded liposomes	in vitro: franz diffusion cells; cellophane mem- brane; in vivo: patients with chronic wounds	release was sustained up to 24 h; release rate of 91.521 µg/cm²/h; improvement in the wound healing rate reduction in the erythema of the ulcer and no signs of hypoglycemia
Li et al. 2019 [25]	5 mg	Keratin—conju- gated insulin hy- drogel (Ins-K)	hairless rat skin	promoted wound healing by stimulating cellular migration; Ins-K hydrogel shows a stronger hemostatic abil- ity than keratin hydrogel; stronger wound healing effect of Ins-K was found in the early regeneration stage; more smooth skin tissues at excision section ob- tained treatment with Ins-K hydrogel
Kaur et al. 2019 [26]	150 μM to 15 mM	•	in vitro: HEKa cells; in vivo: male Wistar rats;	higher wound healing activity in higher hypergly-

		insulin—loaded silver nanoparti- cles (AgNPs)	diabetic and healthy rats	improvement in collagen deposition; insulin regulates the early inflammatory phase; rapid decrease of pro-inflammatory cytokines and an increase in anti-inflammatory cytokine antibacterial activity
Ribeiro et al. 2020 [27]	0.5 IU		diabetes mellitus animal model using Wister rats	stimulate inflammatory cell and angiogenesis; improve wound maturation in diabetic rats
Zhu et al. 2020 [21]	10 mg/mL	Oxidized hyalu- ronic acid/suc- cinyl chitosan gel; insulin-loaded micelles	<i>v</i> 1	the rate of insulin release depends on the glucose concentration in the wounded tissue; high biocompatibility and low cytotoxicity; promotion of fibroblast proliferation and tissue in- ternal structure integrity, as well as the deposition of collagen and myofibrils; combining insulin with epidermal growth factor resulted in even more effective wound healing
Ostróżka- Cieślik et al. 2021 [28]	1 mg/g (0.1% w/w)	Carbopol Ultrez 10, Carbopol Ultrez 30, methyl cellulose, glycerol oint- ment	in vitro: enhancer cel; cellulose dialysis mem- brane	insulin release from the formulations occurs in a prolonged manner; methyl cellulose-based hydrogel released API reaching 75% after 9 h
Chakraborty et al. 2021 [29]	0.2 IU/g	Aloe vera gel; insulin—loaded nanoemulsion	diabetic rats	greater wound contraction (75% in 15 days); improvement in the skin histological architecture; gel is nonirritant and is safe for topical use; aloe vera with insulin-loaded nanoemulsion showed synergistic effect
Quitério et al. 2021 [1]	10 mg/g (1% <i>w/w</i>)	Pluronic ® F 127 gel; insulin—loaded PLGA nanoparti- cles		insulin was completely released from NPs and its structure was preserved; in vitro release studies suggested a controlled re- lease profile (5 µg/cm²/8h); improves wound healing without causing side ef- fects

Abbreviations: NPs, nanoparticles; PVA, poly(vinyl alcohol); PLGA, poly(lactide-co-glycolide).

The hydrogels used are three-dimensionally crosslinked polymeric networks [30]. Of note is the type of polymers used, which included both natural and synthetic biomaterials. Natural polymers (including collagen, gelatin, silk, chitosan, cellulose, alginate, and hyaluronic acid) show the ability to mimic native tissue structure and function. They are biocompatible and rarely cause inflammatory reactions. Unfortunately, they are subject to enzymatic degradation and exhibit unsatisfactory mechanical properties. The most commonly used synthetic polymers, on the other hand, are poly(ethylene glycol) (PEG), poly (lactic acid) (PLA), and poly (lactide-co-glycolide) (PLGA). They can be chemically modified, affecting their crosslinking density, mechanical strength, and controlled degradation. However, they are characterised by low biodegradability and an increased risk of inflammation [31].

Poly(vinyl alcohol) (PVA) is a biocompatible synthetic polymer with a high content of hydroxyl functional groups. It is characterised by high strength and exhibits non-toxicity, and biodegradability [30,32]. Cai et al. [22] used PVA (with the addition of glycerol, a hydrophilic plasticiser) as a matrix for insulin. They conducted their study in a rat model and confirmed prolonged insulin release from the carrier over 10 days. Abdelkader et al. [23] found that insulin-loaded PLGA NP (poly(lactide-co-glycolide nanoparticles) suspended in structured poly (vinyl alcohol)-borate hydrogel improved wound healing.

Chitosan is a β -1,4-polysaccharide of natural origin with valuable biological properties. The polymer is non-toxic, biodegradable, exhibits microbial inhibition (destabilises the outer membrane of gram-negative bacteria), and accelerates wound healing [31]. Dawoud et al. [24] designed an insulin-loaded liposomal chitosan gel. The liposomal encapsulation of insulin gave INS high stability (6 months in an aqueous dispersion state at 4 °C), and the hormone was released over 24 h. Compared to the control group, the wound healed 16 times faster. Other authors have confirmed that insulin-containing chitosan nanoparticles show the ability to stimulate inflammatory cell proliferation, and angiogenesis, followed by wound maturation [27]. Zhu et al. [21] prepared gels based on oxidised hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles. They conducted the study on rats with induced diabetes and confirmed the applicability of the developed material for wound healing. The technological procedure of combining two types of polymers influences greater mechanical stability of the obtained hydrogel and improves its mechanical properties [33].

Alginate is a biopolymer that is biocompatible and non-toxic. It demonstrates the ability to form hydrogels through interactions with calcium ions, for example. It minimises the risk of bacterial infection at the wound site [33]. Dhall et al. [13] confirmed that insulin in the PLGA-alginate matrix stimulates regenerative burn wound healing in a rat model. Insulin enhances reepithelialisation via stimulating angiogenesis. Another hydrogel based on Aloe vera shows antibacterial, anti-septic, anti-inflammatory, and ability to stimulate fibroblast proliferation and collagen synthesis [34]. Chakraborty et al. [29] developed a gel formulation of Aloe vera with insulin-loaded nanoemulsion. They tested the efficacy of the formulation in a diabetic rat model. The authors found an improvement in the skin histological architecture in a group of rats with wounds on the back. The results obtained confirm that Aloe vera can be a competitive carrier for improving skin wound healing. In contrast, the hydrogel formulation: insulin-conjugated keratin, proposed by Li et al. [25] promotes hemostasis and tissue regeneration.

Pluronic F127 (poloxamer) is an amphiphilic thermosensitive polymer of the copolymer group. Quitério et al. [1] developed insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles in a Pluronic F-127 ((polyethylene oxide-b-propylene oxide-b-ethylene oxide, POLX) gel. The authors confirmed the stability of insulin after encapsulation and the release of the hormone from NPs. The developed formulation with insulin reduced the healing time of burn wounds.

Carbomer (trade name: Carbopol) is a polymer available in several different grades, which differ in the percentage of crosslinking agents. It allows the preparation of stable hydrogels in acidic and basic environments [35]. It has mucoadhesive properties. Increasingly, this polymer is being used to develop controlled drug delivery systems [36,37]. Kaur et al. [26] used Carbopol-980 as a carrier for insulin-loaded silver nanoparticles (AgNPs). The developed formulation showed significant therapeutic activity in vitro and in vivo. It resulted in faster wound healing in normal and diabetic rats. The mechanism of action involved promoting wound remodeling by regulating the relationship between positive inflammatory factors (IL-6, TNF α) and negative inflammatory factors (IL-10). High efficacy in developing a hydrogel formulation with insulin was also confirmed for Carbopol Ultrez 10 and Carbopol Ultrez 30 [28]. A study by Besson et al. [11] also confirmed the effectiveness of Carbopol 940 as a carrier of complexed insulin with 2-hydroxypropyl- β -cyclodextrin (HP β CD). Slow release of INS from the complex modulated the reepithelialisation process by stimulating cell proliferation and migration of keratino-cytes.

4. Conclusions

The results of the study confirm that topical administration of insulin improves wound healing without significantly affecting the occurrence of side effects. The use of hydrogels allows efficient delivery of the peptide into the wound environment. We believe that work on insulin formulations should continue, which will allow the mechanism of action of this hormone on wounds to be explored and an effective formulation to be developed for clinical use. Hydrogels are a promising direction for the development of an insulin carrier. We would like the present work to inspire further research explorations.

Author Contributions: Conceptualization, A.O.-C.; literature review, A.O.-C., M.P., W.W., K.B., M.M.; writing—original draft preparation, A.O.-C., M.P., W.W., K.B.; writing—review and editing, A.O.-C.; funding acquisition, A.O.-C., B.D. All authors have read and agreed to the published version of the manuscript.

Funding: Please add: The research was financed by the Medical University of Silesia in Katowice: No. PCN-1-053/K/2/F.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Quitério, M.; Simões, S.; Ascenso, A.; Carvalheiro, M.; Leandro, A.P.; Correia, I.; Viana, A.S.; Faísca, P.; Ascensão, L.; Molpeceres, J.; et al. Development of a Topical Insulin Polymeric Nanoformulation for Skin Burn Regeneration: An Experimental Approach. *Int. J. Mol. Sci.* 2021, 22, 4087. https://doi.org/10.3390/ijms22084087.
- Madibally, S.V.; Solomon, V.; Mitchell, R.N.; Van De Water, L.; Yarmush, M.L.; Toner, M. Influence of insulin therapy on burn wound healing in rats. J. Surg. Res. 2003, 109, 92–100. https://doi.org/10.1016/s0022-4804(02)00036-7.
- Abdelkader, D.H.; Osman, M.A.; El-Gizawy, S.A.; Hawthorne, S.J.; Faheem, A.M.; McCarron, P.A. Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers—A potential topical wound management approach. *Eur. J. Pharm. Sci.* 2018, 114, 372–384. https://doi.org/10.1016/j.ejps.2017.12.018.
- Shanley, L.J.; McCaig, C.D.; Forrester, J.V.; Zhao, M. Insulin, not leptin, promotes in vitro cell migration to heal monolayer wounds in human corneal epithelium. *Investig. Ophthalmol. Vis. Sci.* 2004, 45, 1088–1094. https://doi.org/10.1167/iovs.03-1064.
- Macedo, A.S.; Mendes, F.; Filipe, P.; Reis, S.; Fonte, P. Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. *Materials* 2021, 14, 4257. https://doi.org/10.3390/ma14154257.
- AbdelKader, D.H.; Tambuwala, M.M.; Mitchell, C.A.; Osman, M.A.; El-Gizawy, S.A.; Faheem, A.M.; El-Tanani, M.; McCarron, P.A. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. *Drug Deliv. and Transl. Res.* 2018, *8*, 1053–1065. https://doi.org/10.1007/s13346-018-0554-0.
- Benoliel, A.M.; Kahn-Perles, B.; Imbert, J.; Verrando, P. Insulin stimulates haptotactic migration of human epidermal keratinocytes through activation of NF-kappa B transcription factor. J. Cell Sci. 1997, 110, 2089–2097. https://doi.org/10.1242/jcs.110.17.2089.
- Hermann, C.; Assmus, B.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. Insulin-mediated stimulation of protein kinase Akt: A potent survival signaling cascade for endothelial cells. *Arterioscler. Thromb. Vasc. Biol.* 2000, 20, 402–409. https://doi.org/10.1161/01.atv.20.2.402.
- 9. Chen, X.; Liu, Y.; Zhang, X. Topical insulin application improves healing by regulating the wound inflammatory response. *Wound Repair. Regen.* **2012**, *20*, 425–434. https://doi.org/10.1111/j.1524-475X.2012.00792.x.
- Benkő, B.M.; Sebe, I.; Szabó, Z.I. Insulin for topical use in wound healing: Opportunities and limitations. *Acta Pharm. Hung.* 2022, 92, 3–19. https://doi.org/10.33892/aph.2022.92.3-19.
- 11. Besson, J.C.F.; Hernandes, L.; Campos, J.M.; Morikawa, K.A.; Bersani-Amado, C.A.; Matioli, G. Insulin complexed with cyclodextrins stimulates epithelialization and neovascularization of skin wound healing in rats. *Injury* **2017**, *48*, 2417–2425. https://doi.org/10.1016/j.injury.2017.08.046.
- 12. Wang, J.; Xu, J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. *Diabetes Metab. Syndr. Obes.* **2020**, *13*, 719–727. https://doi.org/10.2147/DMSO.S237294.

- Dhall, S.; Silva, J.P.; Liu, Y.; Hrynyk, M.; Garcia, M.; Chan, A.; Lyubovitsky, J.; Neufeld, R.J.; Martins-Green, M. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. *Clin. Sci. (Lond).* 2015, 129, 1115– 1129. https://doi.org/10.1042/CS20150393.
- 14. Chen, X.; Liu, Y.; Zhang, X. Topical insulin application improves healing by regulating the wound inflammatory response. *Wound Repair Regener.* **2012**, *20*, 425–434. https://doi.org/10.1111/j.1524-475X.2012.00792.x.
- 15. Liu, Y.; Dhall, S.; Castro, A.; Chan, A.; Alamat, R.; Martins-Green, M. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue. *Biol. Open.* **2018**, *7*, bio026187. https://doi.org/10.1242/bio.026187.
- Lima, M.H.M.; Caricilli, A.M.; de Abreu, L.L.; Araújo, E.P.; Pelegrinelli, F.F.; Thirone, A.C.P.; Tsukumo, D.M.; Pessoa, A.F.M.; dos Santos, M.F.; de Moraes, M.A.; et al. Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial. *PLoS ONE* 2012, *7*, e36974. https://doi.org/10.1371/journal.pone.0036974.
- 17. Barker, J.N.; Jones, M.L.; Mitra, R.S.; Crockett-Torabe, E.; Fantone, J.C.; Kunkel, S.L.; Warren, J.S.; Dixit, V.M.; Nickoloff, B.J. Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. *Am. J. Pathol.* **1991**, *139*, 869–876.
- 18. Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. *Nature* **2008**, 453, 314–321. https://doi.org/10.1038/nature07039.
- 19. Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. https://doi.org/10.1177/0022034509359125.
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Mutlu, N.; Boccaccini, A.R. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. *Adv. Healthc. Mater.* 2020, 9, e2000905. https://doi.org/10.1002/adhm.202000905.
- Zhu, J.; Jiang, G.; Hong, W.; Zhang, Y.; Xu, B.; Song, G.; Liu, T.; Hong, C.; Ruan, L. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. *Mater Sci. Eng. C. Mater. Biol. Appl.* 2020, 117, 111273. https://doi.org/10.1016/j.msec.2020.111273.
- 22. Cai, Y.; Che, J.; Yuan, M.; Shi, X.; Chen, W.; Yuan, W.E. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy. *Exp. Ther. Med.* **2016**, *12*, 2039–2044. https://doi.org/10.3892/etm.2016.3593.
- Abdelkader, D.H.; Tambuwala, M.M.; Mitchell, C.A.; Osman, M.A.; El-Gizawy, S.A.; Faheem, A.M.; El-Tanani, M.; McCarron, P.A. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. *Drug. Deliv. Transl. Res.* 2018, *8*, 1053–1065. https://doi.org/10.1007/s13346-018-0554-0.
- Dawoud, M.H.S.; Yassin, G.E.; Ghorab, D.M.; Morsi, N.M. Insulin Mucoadhesive Liposomal Gel for Wound Healing: A Formulation with Sustained Release and Extended Stability Using Quality by Design Approach. *AAPS PharmSciTech.* 2019, 20, 158. https://doi.org/10.1208/s12249-019-1363-6.
- 25. Li, W.; Gao, F.; Kan, J.; Deng, J.; Wang, B.; Hao, S. Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf. B. *Biointerfaces*. **2019**, *175*, 436–444. https://doi.org/10.1016/j.colsurfb.2018.12.020.
- Kaur, P.; Sharma, A.K.; Nag, D.; Das, A.; Datta, S.; Ganguli, A.; Goel, V.; Rajput, S.; Chakrabarti, G.; Basu, B.; et al. Novel nanoinsulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing. *Nanomedicine* 2019, 15, 47–57. https://doi.org/10.1016/j.nano.2018.08.013.
- Ribeiro, M.C.; Correa, V.L.R.; Silva, F.K.L.D.; Casas, A.A.; Chagas, A.L.D.; Oliveira, L.P.; Miguel, M.P.; Diniz, D.G.A.; Amaral, A.C.; Menezes, L.B. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. *Eur.* J. Pharm. Sci. 2020, 150, 105330. https://doi.org/10.1016/j.ejps.2020.105330.
- Ostróżka-Cieślik, A.; Maciążek-Jurczyk, M.; Pożycka, J.; Dolińska, B. Pre-Formulation Studies: Physicochemical Characteristics and In Vitro Release Kinetics of Insulin from Selected Hydrogels. *Pharmaceutics* 2021, 13, 1215. https://doi.org/10.3390/pharmaceutics13081215.
- 29. Chakraborty, T.; Gupta, S.; Nair, A.; Chauhan, S.; Saini, V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. *J. Drug Deliv. Sci. Technol.* **2021**, *64*, 102601. https://doi.org/10.1016/j.jddst.2021.102601.
- 30. Chen, Y.; Li, J.; Lu, J.; Ding, M.; Chen, Y. Synthesis and properties of poly (vinyl alcohol) hydrogels with high strength and toughness. *Polym. Test.* **2022**, *108*, 107516. https://doi.org/10.1016/j.polymertesting.2022.107516.
- Bardill, J.R.; Laughter, M.R.; Stager, M.; Liechty, K.W.; Krebs, M.D.; Zgheib, C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. *Acta Biomater.* 2022, 138, 73–91. https://doi.org/10.1016/j.actbio.2021.10.045.
- Li, Z.; Yu, C.; Kumar, H.; He, X.; Lu, Q.; Bai, H.; Kim, K.; Hu, J. The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion. *Gels* 2022, *8*, 682. https://doi.org/10.3390/gels8100682.
- 33. Aderibigbe, B.A.; Buyana, B. Alginate in Wound Dressings. *Pharmaceutics* 2018, 10, 42. https://doi.org/10.3390/pharmaceutics10020042.
- Pereira, R.; Mendes, A.; Bártolo, P. Alginate/Aloe vera hydrogel films for biomedical applications. *Procedia CIRP* 2013, 5, 210–215. https://doi.org/10.1016/j.procir.2013.01.042.
- Ostróżka-Cieślik, A. The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers 2022, 14, 3307. https://doi.org/10.3390/polym14163307.
- Suhail, M.; Wu, P.-C.; Minhas, M.U. Using Carbomer-Based Hydrogels for Control the Release Rate of Diclofenac Sodium: Preparation and In Vitro Evaluation. *Pharmaceuticals* 2020, 13, 399. https://doi.org/10.3390/ph13110399.

 Sarfraz, M.; Iqbal, R.; Khan, K.U.; Minhas, M.U. Carbopol Based Hydrogels for ITOPRIDE Hydrochloride Delivery; Synthesis, Characterization and Comparative Assessment with Various Monomers. J. Funct. Biomater. 2022, 13, 295. https://doi.org/10.3390/jfb13040295.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.