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Abstract: Vast advances in nanobiotechnology have been attributed to nanoflowers as some of the 9 

most promising materials. Nanoflowers are flower-like nanomaterials that possess a higher sur- 10 

face-area-to-volume ratio compared to other nanoparticle morphologies. Utilization of nanoflowers 11 

in biosensor platforms for detection of analytes or in drug delivery as conjugation sites has been 12 

extensively described in the literature. Biocatalysis, tissue engineering, and nanotheranostics are 13 

also among other areas of interest. In this review, fabrication, morphologies, and applications of 14 

nanoflowers in various areas of biomedicine are addressed. Current and future trends are dis- 15 

cussed, while emphasis is also given to biocompatibility and nanotoxicity of these structures. 16 
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 18 

1. Introduction 19 

Even though nanotechnology is a scientific field that has only recently begun to 20 

develop, its potential was already apparent at the time when physicist Richard Feynman 21 

gave his famous speech entitled "There's Plenty of Room at the Bottom". In his talk, 22 

Feynman referred to the great margins that the laws of nature leave to control matter at 23 

the atomic level [1]. As a multidisciplinary field, nanotechnology combines the synthesis 24 

and technical applications of nanoscale materials.  Nanomaterials present different 25 

properties than their bulk analogs due to their size. The uses of nanotechnology are in- 26 

numerable, while its effects are noticeable on multiple levels, providing solutions to 27 

complex problems. Diverse applications can be found in scientific areas such as 28 

eletronics, cosmetics, the food industry, biotechnology, and pharmaceuticals [2–4]. In 29 

biomedicine, nanotechnology can be utilized in both the diagnosis and treatment of 30 

diseases. Various materials and nanoparticle morphologies can lead to different out- 31 

comes. Metal, metal oxides, carbon, dendrimers, polymeric, lipid, and composite na- 32 

noparticles are among a few [5]. Morphology and shape of nanomaterials can vary ac- 33 

cording to the desired needs, including rods, hexagons, cubes, spheres, and tiles [6].  34 

Moreover, nanostructured surfaces have been used in various biotechnological products 35 

and platforms, such as biosensors [7]. Nanoflowers are a unique class of nanomaterials 36 

that have a structure that resembles the morphology of flowers resulting in a high sur- 37 

face-to-volume-ratio area and stability. Subramani et al., reported different names for  38 

morphologies of nanoflowers like rosette, spherical, rhombic, red blood cell-like, 39 

and rod-like, while ZnO petals were named as nanocones, nanobowling, nanobottles, 40 

nanoarrows, and nanonails by Shen et al. [8,9]. Inorganic, organic, or hybrid nanoflow- 41 

ers can be synthesized via various methods. Synthesis parameters such as reaction time, 42 

ph, and temperature can affect the final product [10]. Moreover, the coating and doping 43 

of nanoflowers can be adjusted [11]. Also, nanoflowers can be conjugated with other 44 

nanomaterials such as graphene or proteins and macromolecules [12–15]. Their structure 45 
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makes them compelling candidates for various scientific areas such as catalysis, sensors, 1 

environmental or energy applications and biomedicine [16,17].  2 

2. Nanoflowers fabrication methods  3 

Inorganic nanoflowers synthesized via chemical and physical methods have been 4 

described extensively in the literature. Wategaonkar et al. synthesized TiO2 nanoflowers 5 

via the hydrothermal method [18]. Bimetallic platinum-rhodium nanoflowers and FeTiO3 6 

nanostructures have also been produced with this method [19]. The solvothermal method 7 

has been utilized for the synthesis of core/shell nanostructures such as Fe3O4@MnO2 and 8 

Ag@Fe3O4 [20,21]. A single-step technique called electrodeposition is used for the pro- 9 

duction of platinum and palladium nanomaterials [22,23]. Other methods include col- 10 

loidal, sol-gel, sputtering, and microwave-assisted synthesis [24–27]. A more environ- 11 

mentally friendly synthetic strategy is the utilization of plant extracts as solvents [28]. 12 

Organic carbon nanoflowers have been produced via various techniques. These include 13 

arc discharge, ultrasound assisted pyrolysis, and chemical vapor deposition [29–31]. An 14 

immerse interest in research has been presented in the literature for the synergistic effects 15 

that hybrid organic–inorganic nanoflowers present. For that reason, various synthetic 16 

approaches have been reported. Hybrid nanoflowers are composed of metal ions and 17 

organic biomaterials such as enzymes, protein, or Deoxyribonucleic Acid (DNA). Cop- 18 

per, calcium and manganese ions conjugated with organic macromolecules have been 19 

synthesized [9]. The coprecipitation synthesis method has been extensively reported for 20 

these structures [32]. Other complex and hybrid structures include nanoflowers func- 21 

tionalized with graphene and Fe3O4/Au-macrophage nanohybrids [12,15].   22 

3. Biomedical applications of nanoflowers  23 

3.1. Biosensors  24 

Among many uses such as imaging, biocatalysis, tissue engineering, and others, 25 

nanoflowers find application in biosensors. Biomedicine requires a quick and economical 26 

method for the detection of various analytes. Biosensors are analytical devices that detect 27 

biological responses and convert them into electrical signals. Nanoflowers have been 28 

used in biosensors due to their high surface-to-volume-area ratio. Their petals serve as 29 

ideal active sites for analyte binding [33]. Glucose has been detected by biosensors with 30 

CuS and Pt nanoflowers [34–36]. Graphene nanoflowers have detected H2O2 [37]. H2O2 31 

has also been detected by biosensors with CuO and ZnO nanoflowers [38,39]. Other an- 32 

alytes reported in the literature are acetylcholine, choline, and ascorbic acid [40–42]. 33 

3.2. Theranostics and Imaging  34 

Nanoparticles with applications in theranostics are being developed for the im- 35 

provement of diagnostic techniques. For these purposes, iron oxide nanoparticles have 36 

been extensively reported as contrast agents in imaging. Fe3O4, Fe0.6Mn0.4O, and 37 

Fe3O4/Au-macrophage nanoflowers have been used in phototherapy, magnetic resonance 38 

imaging, and for diagnostic and therapeutic purposes [12,43,44].  39 

3.3. Drug delivery  40 

The high surface-to-volume ratio of nanoflowers enables them to be ideal nano- 41 

materials for drug delivery applications. Drug and gene conjugation can occur in the 42 

petals of these unique nanomaterials. Doxorubicin was loaded into Au@Si core shell 43 

nanoflowers for anti-tumor therapy [45]. Lakkakula et al. synthesized organic 44 

nanoflowers for cyclodextrin drug delivery [46]. Graphene, an ideal platform for binding 45 

drug molecules, was decorated with titanate as a drug delivery system [47]. DNA hybrid 46 

nanoflowers can also act as biocompatible nanomaterials [48].  47 

3.4. Biocatalysis 48 
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Nanoparticles’ surface can act as a catalyst for various biological reactions. A hybrid 1 

nanoflower of polyphosphate kinase and Cu3(PO4)23H2O was utilized for the generation 2 

of Adenosine Diphosphate (ADP) from Adenosine Monophosphate (AMP) [49]. Moreo- 3 

ver, conversion of cholesterol and steroids has been reported [50,51]. Arastoo et al., 4 

produced collagen hydrolysates utilizing collagenase-CO3(PO4)2 nanoflowers [52]. Other 5 

uses include the catalysis of toxic chemicals such as bisphenol-A, Methylene blue and 6 

other azo dyes [53–55].  7 

3.4. Tissue engineering 8 

Tissue engineering is a multidisciplinary scientific field that aims to study and create 9 

tissues or organs. ZnO nanoflowers have been utilized in tissue engineering for osseoin- 10 

tegration, neuritogenesis, and angiogenesis [56]. Skin tissue regeneration has been re- 11 

ported by Xiaocheng et al. [57]. In this study, Cu2S nanoflowers were incorporated into 12 

membranes for the treatment of skin wounds after surgery. 13 

3.4. Antimicrobial activity  14 

Antimicrobial activity can result from Fenton-like reactions on the surface of 15 

nanoflowers or from conjugated organic molecules and plant extracts [58]. Microorgan- 16 

isms against which nanoflowers have proven their antimicrobial activity include Staph- 17 

ylococcus aureus, Escherichia coli, Aeromonas caviae and Salmonella typhi [59–61]. Plant 18 

extracts that can act as antimicrobial materials are green tea extract and trigonella foe- 19 

num-graecum seed extract among others [60,62].  20 

4. Biocompatibility and nanotoxicity 21 

Each nanostructure has a different toxicological profile, and thus, animal studies 22 

need to be done in order to ensure the safety and biocompatibility of the structures. One 23 

strategy to reduce the nanotoxicity of nanomaterials is the incorporation of nanoparticles 24 

into a core-shell structure, making the material biocompatible. Various core shell struc- 25 

tures have been presented previously [11,45]. As in all nanomaterials, toxicity can also be 26 

induced by chemical synthesis byproducts and solvents. Utilizing green chemical syn- 27 

thesis methods or plant extracts as solvents can be a major solution to that problem [63].  28 

5. Conclusion and future trends 29 

Nanoflowers, a unique class of materials, can be synthesized via various methods, 30 

resulting in a variety of morphologies. Organic, inorganic, and hybrid nanostructures can 31 

find applications in drug delivery, tissue engineering, biocatalysis, and biosensors. Alt- 32 

hough these nanoparticles are stable, research needs to be done in order to stabilize more 33 

the final products. Also, reproducibility from batch to batch is a critical parameter in 34 

nanomaterial synthesis. Environmentally green synthesis methods also need to be stud- 35 

ied, while emphasis has also to be given to the elimination of toxic chemical byproducts 36 

during the synthesis and the biocompatibility of structures. Finally, reduction of synthe- 37 

sis cost is another parameter that needs to be investigated. 38 

 39 
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