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Abstract: Addressing natural hazard’s complexity is essential in preventing human fatalities and 

conserving natural ecosystems as natural hazards are varied and unbalanced in both time and place. 

So, the main objective of this study is to present a Flood Vulnerability Hazard Map and its evalua-

tion for hazard management and land use planning. The inventory map of natural hazard- flood is 

generated for different Flood locations using multiple official reports. To generate the vulnerability 

maps, a total number of 9 geo-environmental parameters are chosen as predictors in Maximum En-

tropy (MaxEnt) machine learning technique and Analytical Hierarchical Process (AHP). The accu-

racy assessment of the predicted output models from MaxEnt are evaluated using Area under the 

curve. Similarly, for AHP outputs the accuracy was tested using the generated inventory map and 

AUC. It is observed that topographical wetness index, elevation, and slope are significant for as-

sessment of flooded areas. Finally, Flood hazard maps are generated and a comparative analysis 

was performed for both methods. According to the study’s findings, the flood map generated by 

MaxEnt was better with 0.83 AUC whereas 0.76 AUC of AHP flood map. From the study it can be 

concluded that, hazard maps could be a useful tool for local authorities to identify places that are 

vulnerable to hazards on a large scale. 

Keywords: Vulnerability Mapping; Maximum Entropy (MaxEnt); Analytical Hierarchy Process 

(AHP); Area under the curve (AUC) 

 

1. Introduction 

Around the world, natural catastrophes pose a major threat to property and human 

lives. Although it is impossible to prevent natural hazards, their negative impact can be 

reduced by creating effective planning strategies and mitigation techniques. Significant 

morphological changes in landforms brought on by active tectonics or climatic changes 

may affect human activity management. Events such as gully erosion, landslides, and 

floods are physical phenomena, active in geological times but uneven in time and space 

[1–4]. 

According to (NDMA, 2008), a flood is extra water that is flooded because rivers’ 

capacity to transfer a large amount of water from the upstream area within their banks 

after significant rainfall is insufficient. Floods occur most frequently and are damaging to 

local social, economic, and environmental aspects of all the natural catastrophes that occur 

on a global scale. High intensity precipitation in the watershed, changes in river cross 

sections caused by sedimentation, sudden dam failure, release of high flow from dam, etc. 

are just a few of the causes of floods. 

Floods can be broadly classified into four categories: fluvial (river) floods, ground 

water floods, pluvial floods, and surge (coastal) floods, depending on a variety of criteria 
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including velocity, geography, and sources. Assam, which is in the monsoon climatic re-

gion, has been having an average yearly rainfall of 1600 mm to 4300 mm, causing flooding 

throughout the region (Assam State Disaster Management, n.d.). Overflowing tributaries 

of the Brahmaputra River also contribute to the volume of flood water in the valley. 

Furthermore, this state has a unique hydrological, climatic, and unstable geological 

condition that intensifies the source of numerous geomorphic and geological dangers in 

the region. Considering all these conditions, the use of remote sensing techniques proves 

to be a viable solution. 

2. Study Area 

The Kamrup metropolitan district is located in the state of Assam which is situated 

in the north-eastern part of India, covering an area of 1528 km2. The study stretches from 

26.07° N latitude and 91.63° E longitude in the lower basin of Brahmaputra, which is prone 

to rapid flooding nearly every year. 

 

Figure 1. Research Study Area—Kamrup Metropolitan, Assam, India. 

In 2021, the districts of Assam had an average annual temperature of 24 °C and an 

annual rainfall of over 2200 mm. Kamrup Metropolitan district is Assam’s administrative 

center, with major cities. 

3. Materials and Methods 

Figure 2 Illustrates the methodology that was approached with AHP modelling and 

MaxEnt Modelling. 

 
(a) 
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Figure 2. (a) AHP flowchart (b) MaxEnt flowchart. 

3.1. Flood Inventory Mapping 

A key step for susceptibility mapping is the preparation of an inventory of hazard 

landforms. The flood inventory for the Kamrup Metropolitan District (Assam, India) were 

compiled from national and regional documents from various organizations like Assam 

State Disaster Management Authority, North East Space Application Centre. About 53 

flood areas are listed on the inventory map for floods. For training samples, a random 

partition approach is used. In the present study, 70% of each hazard was considered for 

model construction (training), and the remaining 30% were used for validation. 

3.2. Flood Conditioning Factors 

It is essential to determine the effective factors on different natural hazards and hu-

man-made fatalities to perform flood maps [5]. A good understanding of the main haz-

ards-related factors is needed to recognize the susceptible areas. 

For this aim, the conditioning factors for the hazard was selected [6–10]. In this study, 

ArcGIS 10.3 (ESRI, USA) is used to perform analysis of AHP, produce and display these 

data layers. All the factors were processed into a raster grid of 30 × 30 m grid cells. Entire 

conditioning factors were primarily continuous, and some of them were classified within 

different categories based on expert knowledge and literature review [11–14]. 

The geo-environmental parameters used in this study are as follows: 

3.2.1. Elevation 

The elevation parameter is of great significance for delineating flood hazards and 

mapping flood zones. During monsoon, downstream generates ideal flood conditions due 

to sedimentation and surge in river flow. Understanding elevation variation is critical for 

river basin generation and propagation of flood waters. In this study, FAB DEM(Forest 

and Building removed Copernicus DEM) data with a spatial resolution of 30 m is used. 

3.2.2. Slope 

The steepness and length of a region’s topography greatly influence its discharge and 

flooding. The rapid velocity of precipitation runoff is caused by steep or high slopes. Low 

or flat slopes, on the other hand, are prone to waterlogging which can lead to high infil-

tration. The slope map was created using FABDEM (DEM) data. 

3.2.3. Land Use Land Cover 

Land use/land cover plays a significant role in the operation of hydrological and ge-

omorphological processes by directly or indirectly influencing on processes such as evap-

otranspiration, infiltration, runoff generation and sediment dynamics. The land use/land 

cover product of 10 m spatial resolution is obtained from Sentinel 2 in Google Earth En-

gine (GEE) platform. 
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3.2.4. Soil Texture 

Soil texture is generally recognized as a weighty controlling factor in the mechanism 

of infiltration and runoff generation and is effective on hazard occurrence. This layer was 

District acquired from the NBSSLUP. The soil texture in the study area comprises of loam 

and clay. 

3.2.5. Topographic Wetness Index (TWI) 

Moore and Grayson [15] and Grabs et al. [16] mention that TWI (Topographic wet-

ness index) represents the tendency of gravitational forces and the spatial distribution of 

wetness conditions to move water to the downslope. The layer was generated using 

DEM. TWI is also important in the regulation of surface runoff since greater wet an area 

is, greater will be its runoff 

3.2.6. Distance from River Channel 

The distance from the river was estimated in ArcGIS using the Euclidean Distance 

tool, which displays the distance of the river basin region to the natural drainage. Natural 

drainage refers to all of the streams and rivers in the study region, which was categorised 

into five classes of 500 m, 1000 m, 1500 m, and 2000 m. 

3.2.7. Drainage Density 

The primary influencing factors that contribute to the occurrence of numerous risks 

is drainage density. A higher surface runoff ratio results from a high drainage density. To 

convert the drainage network pattern to measurable quantity, the drainage density was 

determined using an extension of “line density” in ArcGIS 10.3 software. 

3.2.8. Rainfall 

Rainfall is a key aspect in this study as floods most commonly occur during monsoon 

season, hence the term “rain-induced floods”. The rainfall map of the study area is gener-

ated using the Inverse Distance Weighted approach (IDW) from Global Precipitation 

Measurement datasets. The map is generated considering annual total rainfall of year 2021 

as 2021 was a flood year. 

3.2.9. Population Density 

One of the critical elements to consider while doing flood vulnerability research is 

population. This component is important in flood-vulnerable areas for analyzing the so-

cial loss and damage suffered by the community as a result of floods. The population 

density map for the study area were obtained from Google Earth Engine databases of 

population density gridded data of ≈1 km spatial resolution. 
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Figure 3. 9 geo—environmental conditioning factors. 

4. Results 

4.1. Maximum Entropy (MaxEnt) 

The Maxent software uses the Maximum Entropy model, to calculate hazard esti-

mates (version 3.4.4). MaxEnt model is usually used to estimate species distribution based 

on the most significant environmental condition. From a decision-theoretic perspective, 

we also interpret the maximum entropy estimation as a reliable Bayes estimation. The 

model relies on a machine learning reaction that generates hypotheses based on skewed 

data. The result from model is obtained in ASCII format. The conditioning factors are 

translated from raster into ASCII format, as required by the software. The most crucial 

phase in the modelling process is validation. The AUC curve has been used to assess the 

built-in hazard models’ prediction accuracy, Figure 4. 
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Figure 4. MaxEnt—Flood mapping. 

4.2. Analytical Hierarchy Process (AHP) 

The Table 1, shows the weights assigned for the nine geo-environmental parameters 

used to generate the flood hazard map. To obtain the spatial distribution of flood hazards, 

the parameters evaluated were mapped and normalized into five classes based on a rating 

scale of 1 to 5, with 1 being least vulnerable area and 5 being most vulnerable area. Figure 

5. 

Table 1. AHP weights. 

Factor Weight 

Slope  0.22 

Distance from River channel in meter 0.17 

Land use land cover 0.05 

Soil Texture 0.10 

Elevation 0.07 

Rainfall in mm 0.04 

Population Density 0.02 

TWI 0.21 

Drainage Density 0.12 

 

Figure 5. AHP—Flood Mapping. 

4.3. Comparative Analysis of sensitivity and Response Curves 

The relative influence of each predictor variable on the outcomes of predicted maps 

using the Jackknife test was examined using a sensitivity analysis from the AUC. On val-

idating with respect to flood inventory points, we observe that MaxEnt slightly outper-

formed AHP modelwith the AUC of 0.83 Figure 6, over an AUC of 0.763, Figure 7. 
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Figure 6. AUC—MaxEnt. 

 

Figure 7. AUC—AHP. 

4.4. Spatial Extent of Vulnerability 

Flood vulnerability maps generated from the outputs of MaxEnt and AHP shows 

that the areas entitling the river, the surfaces with slopes of 0 degrees to 11 degrees and 

the land with the elevation range of 41 m to 52 m showed vulnerability to floods. Subse-

quently, on inspecting with Bhuvan—ISRO historical flood maps, we observe that, the 

flood map generated by MaxEnt and AHP, showed a reasonable resemblance with flood 

maps of Bhuvan, ISRO. 

From the results we also observed that out of 1528 km2 total area of the district, about 

650 km2 was found to be highly vulnerable to floods and major locations like Guwahati, 

Dispur, Sonapur Gaon of the Kamrup Metropolitan District showed a higher vulnerability 

to flooding. 

5. Conclusions 

In this study, a flood vulnerability map was generated for major district of Assam 

utilizing the AHP approach and MaxEnt machine learning technique. Given their ability 

to handle huge datasets, multi-criteria analysis using AHP and MaxEnt Technique was 

identified and proved beneficial for flood risk assessments. 

Slope, Drainage density, TWI, and Elevation were the primary flood-causing geo-

environmental parameters in the studied area. The AHP method and MaxEnt technique 

employed in this study are effective and enable the possibility of further research into 

flood vulnerabilities in various sections of the state or country. The AUC graphs is em-

ployed as a validation method in this work which demonstrates additional possibility for 

research validation and applicability in geospatial vulnerability assessment owing to ex-

treme events. 
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