

2

3

4

5

6

7

8

Proceedings Paper Inter-relationships of Pediatric obesity and mitochondrial dysfunction

Ramadan A. Saad1.2 and Haitham MohammedHabib Qutob3

¹Physiology department, Faculty of Medicine, Ain Shams university and Egypt.
 ²Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
 ³Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia

Abstract: Childhood (pediatric) obesity is becoming more common at an alarming rate. Obese chil-9 dren are more likely to develop insulin resistance, relative insulin insufficiency, and type 2 diabetes. 10 Recent research suggests that mitochondrial dysfunction is related to, and may be predictive of, 11 insulin resistance in adult relatives of type 2 diabetes patients. Mitochondria produce ATP, which 12 is used to create energy, especially in muscle tissue, and they play a role in glucose and fat metabo-13 lism. Mitochondrial dysfunction has a role in the development of metabolic diseases. Affected tis-14 sues include adipose, liver, and skeletal muscle, which all contribute to food metabolism. Because 15 cells require a balance between mitochondrial ATP generation through oxidative phosphorylation 16 (OXPHOS) and proton gradient dissipation to avoid damage from reactive oxygen species (ROS), 17 abnormal mitochondrial function leads to fat buildup and insulin resistance. Obesity, insulin re-18 sistance, and type 2 diabetes (T2D) are all caused by growth and transcription factors that influence 19 mitochondrial gene expression. On the other hand, obesity and hypertension both impair heart mi-20 tochondrial biogenesis and function. By promoting the expression of chaperones, SIRT1, and anti-21 oxidants, moderate weight reduction reduces systemic inflammation and improves mitochondrial 22 dysfunction. In this review, the variables that relate mitochondrial dysfunction to pediatric obesity 23 were discussed. 24

Keywords: mitochondrial dysfunction; pediatric obesity; bariatric surgery; gestational diabetes

26

27

25

Introduction

Obesity is a multifactorial disease described by a low-grade chronic inflammatory 28 state caused by an excess of malfunctioning adipose tissue [1]. This low-grade chronic 29 inflammatory state is strongly and persistently associated with excess body fat mass and 30 is characterized by pro-inflammatory cytokine and chemokine release as a result of pro-31 inflammatory macrophage and other immune cell infiltration and activation [2]. A recent 32 study from the USA found that by 2030, at least 55–60% of today's children will be obese 33 [3]. A nutrient imbalance between energy input and output causes secondary mitochon-34 drial dysfunction in this pathological condition [4], which may contribute to the increased 35 risk of obesity-related diseases [5]. 36

Mitochondria are key organelles for several aspects of cellular homeostasis, including 37 cellular energy production via oxidative phosphorylation, apoptosis, and calcium regulation. Because of these several activities within cells, mitochondrial function is critical to 39 cellular and metabolic health. Changes in mitochondrial function can cause a variety of 40 disorders, including neurological, cardiovascular, muscular, hepatic, endocrine, and reproductive disorders [6]. 42

Childhood obesity, also known as pediatric obesity, is caused by genetic predisposition, and some environmental factors like consumption of fatty foods and a high-sugar diet, as well as cigarette smoking and a lack of exercise. Obesity affects 34% of children in 45

Citation: Physiology department; Medicine, F.o.; Shams university, A.; Egypt. Ramadan A. Saad1.2 and Haitham MohammedHabib Qutob3. 2023, 3, x. https://doi.org/10.3390/xxxxx Published: 12 April 2023

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

the United States, and it is a major public health concern due to the high rates of illness 1 and mortality. Furthermore, obesity-related medical costs have risen, accounting for 40% 2 of the healthcare budget in 2006 [7]. Children with obesity who were followed-up to adult-3 hood were much more likely to suffer from cardiovascular and digestive diseases. In ad-4 dition, the increase in body fat also exposes the children to an increase in the risk of nu-5 merous forms of cancer, such as breast, colon, esophageal, kidney, and pancreatic cancer 6 [7]. Pediatric obesity has more than doubled in children and quadrupled in adolescents 7 globally in the last 30 years [8]. In children with obesity, the inflammatory markers are 8 elevated as early as in the third year of life [9]. This has been linked to heart disease later 9 in life [10]. Long-term effects of such findings can result in cumulative vascular damage, 10 which correlates with increased weight status [11]. Figure 1. 11

Mitochondrial dysfunction has a role in the pathophysiology of metabolic diseases. 12 Affected tissues include those involved in metabolism, such as adipose, liver, and skeletal 13 muscle. As previously mentioned, the cells require a balance between mitochondrial ATP 14generation via oxidative phosphorylation (OXPHOS) and proton gradient dissipation to 15 avoid damage from reactive oxygen species (ROS). Abnormal mitochondrial function re-16 sults in fat buildup and insulin resistance. The pathophysiology of obesity, insulin re-17 sistance, and type 2 diabetes is influenced by growth and transcription factors that regu-18 late mitochondrial gene expression [4]. 19

The main purpose of this overview is to focus on the link between mitochondrial dysfunction and childhood obesity.

Mitochondria (anatomy and physiology)

The TCA cycle and the electron transport chain enable the mitochondria to produce 23 most of the body's cellular energy (>90%) in the form of ATP. Five multi-subunit enzyme 24 complexes make up mitochondrial ETC, which are in the inner mitochondrial membrane 25 (I, II, III, IV, and V). The ETC receives electron donations from NADH and FADH2 26 produced by the TCA cycle at Complex I (NADH:ubiquinone oxidoreductase) and 27 Complex II (succinate dehydrogenase), respectively. After passing through Com-28 plex III (coenzyme Q: cytochrome c reductase), electrons are subsequently trans-29 ferred to cytochrome c. Molecular oxygen binds and is reduced to water in Com-30 plex IV (cytochrome c oxidase) by the mobile electron carrier cytochrome c after 31 it has undergone reduction. The mitochondrial membrane potential () is an electro-32 chemical proton gradient that is produced when ten protons (H+)-two from Com-33 plex III, four from each of Complex I and Complex IV—are pushed from the ma-34 trix into the intermembrane space in response to electron transport. Since it con-35 nects electron transport (complexes I–IV) (and oxygen consumption) to the activ-36 ity of Complex V (ATP synthase), where protons re-enter the matrix to dissipate 37 the proton gradient, the protonmotive force (p) is a crucial part of the process of 38 energy storage during OXPHOS [12]. Figure 2 39

ROS are continuously produced by mitochondria because of oxygen metabolism and 40 excessive free radical generation. The antioxidant enzymes superoxide dismutase, cata-41 lase, glutathione reductase, and glutathione peroxidase are all part of the enzymatic de-42 fense system and act as a protective mechanism against this oxidative stress. Antioxidant 43 compounds (e.g., glutathione (GSH), vitamins E and C, as well as many carotenoids and 44 flavonoids) shield cells from oxidative damage. However, when the antioxidant defenses 45 are overpowered, there is an excess of ROS, which results in oxidative damage to the mi-46 tochondria's proteins, DNA, and lipids [13]. Excessive ROS may damage DNA, RNA, li-47 pids, and proteins under pathological circumstances, which causes their interactions to 48 result in functional harm or irreversible alterations to the targets. ROS are currently 49 thought to be the main agents of cell destruction. Additionally, oxidative stress can harm 50 cells and possibly support cancer [14]. 51

22

20

In addition to being the primary producers of ROS, mitochondria are also the pri-1 mary targets of oxidative damage, which can decrease mitochondrial effectiveness and 2 increase ROS production [15]. Additionally, peroxisomes play a role in the generation and 3 removal of ROS. Numerous oxygen-consuming metabolic processes take place in peroxi-4 somes. Hydrogen peroxide, which can oxidize several compounds, is produced because 5 of oxygen consumption in peroxisomes [16]. Impairment of mitochondrial oxidative phos-6 phorylation, a rise in the number of aberrant mitochondrial structures, and altered expres-7 sion and activity of the respiratory chain complex are all results of peroxisome dysfunc-8 tion [17]. Figure 3 9

Pathophysiology of childhood obesity

A significant variety of hormones, are released by the gastrointestinal system, and 11 involved in the appetite control and energy balance [18]. Ghrelin is the sole known appe-12 tite-stimulating (orexigenic) gut hormone, produced by the stomach's oxyntic glands. 13 Shortly before a meal, ghrelin levels rise. Other gut hormones that have been discovered 14 so far are anorexigenic (decrease appetite and food intake). Peptide tyrosine tyrosine 15 (PYY), pancreatic polypeptide, oxyntomodulin, amylin, glucagon, glucagon-like peptide-16 1 (GLP-1) and GLP-2 are only a few of them. PYY, for example, is a satiety signal and rises 17 within 15 minutes after eating, resulting in a reduction in food consumption. The gastro-18 intestinal tract is the body's biggest endocrine organ, releasing hormones that play critical 19 sensing and signaling functions in energy balance management [19]. Figure 4 20

Obesity in children is a multifaceted disorder caused by genetic and non-genetic factors, as well as their complex interactions. Energy intake and expenditure are also influenced by genetics and societal variables (socioeconomic position, race/ethnicity, media and marketing, and the physical environment). Excess body fat appears to be the outcome of a complicated interaction between the environment and the body's genetic and epigenetic susceptibility to obesity. The development of childhood overweight or obesity is influenced by a number of variables or risk factors [20].

In populations at high risk of obesity and diabetes, gestational diabetes exposure is 28 connected with an elevated risk of childhood and early adult obesity in the children [21]. 29 Some studies have found that severe variation in maternal adiposity (achieved, for exam-30 ple, by bariatric surgery) impacts child obesity. The frequency of overweight and obesity 31 among children of women who lost a lot of weight after surgery was comparable to the 32 general population, with no rise in underweight [22]. Furthermore, higher birth weight is 33 linked to both increased fat and increased lean mass in the progeny. Babies that are small 34 for gestational age yet develop quickly may be at risk of childhood obesity [23]. Table 1 35

Gestational diabetes, Childhood obesity and mitochondrial dysfunction

Gestational diabetes mellitus (GDM) is a frequent pregnancy condition in which hyperglycemia develops spontaneously throughout the pregnancy [24]. Maternal overweight or obesity, a westernized diet with nutritional deficiencies, maternal age, and a family history of insulin resistance and/or diabetes are all risk factors. While GDM normally goes away after delivery, it can have long-term health implications for the mother, such as an increased risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD), as well as future obesity, CVD, T2DM, and/or GDM in the child [25].

GDM has both short and long-term consequences. The fetus's endogenous synthesis 44 of insulin and insulin-like growth factor 1 (IGF-1) is stimulated by the increase in placental 45 transport of glucose, amino acids, and fatty acids stated earlier. These factors can combine 46 to produce fetal enlargement, which can lead to macrosomia at birth [26]. Babies born 47 during GDM pregnancies have a higher risk of obesity, T2DM, CVD, and other metabolic 48 illnesses later in life. Even after controlling for variables like maternal BMI, children born 49

10

2

3 4

5

6

to diabetic women have nearly double the chance of developing childhood obesity as children born to nondiabetic women [27]. As a result, females are more prone to have GDM during their own pregnancies, adding to a vicious GDM intergenerational cycle [28].

Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children

Energy storage is dependent on adipose tissue. It's also a metabolically active organ 7 that plays a part in glucose homeostasis and endocrine activities [29]. Obesity, on the other 8 hand, can alter adipose tissue functions and cause an increase in the release of fatty acids, 9 hormones, and proinflammatory molecules, all of which can contribute to obesity-related 10 complications [30]. Several studies have shown that obesity reduces adipose tissue mito-11 chondrial respiration, suggesting mitochondrial dysfunction [31]. Obesity and other 12 metabolic disorders like type 2 diabetes and metabolic syndrome are linked to a mito-13 chondrial overload of glucose and fatty acids, which results in incomplete substrate oxi-14 dation and increased production of intermediate products like diacylglycerol, which stim-15 ulates the production of reactive oxygen species (ROS) [32]. Reduced fatty-acid oxidation 16 has been reported in animal models and in individuals with obesity as another manifes-17 tation of mitochondrial dysfunction [33]. 18

It was reported that, changes in mitochondrial structure and function may have a 19 role in the pathophysiology of obesity-related diseases [34]. Reduced mitochondrial mass 20 and mitochondrial biogenesis (MB) genes, structural damage, and altered mitochondrial 21 morphology were observed in severe obesity, as well as mitochondrial protein hyper-22 acetylation [35], increased inflammation, ROS generation, and oxidative stress [36]. 23

The major transcription factor, PPARY regulates MB in adipocytes [37]. The PGC-1 24 transcriptional factor family also has a role in the dynamic modulation of MB and respir-25 atory performance [38]. Post-translational modifications evoked by intracellular energy 26 state sensors like cAMP-activated protein kinase (AMPK) and NAD+-dependent deacety-27 lase SIRT1 modulate the activity of PGC-1 α [39]. SIRT1 stimulates the generation of ad-28 iponectin in adipose tissue, which improves metabolic efficiency [40]. SIRT1 expression is 29 significantly decreased in adipose tissue from obese people, which has a negative influ-30 ence on adipocytes' energy status [38]. SIRT1 interacts closely with AMPK and deacety-31 lates several lysine residues in PGC-1 α under normal circumstances, resulting in the pro-32 motion of lipid catabolism while inhibiting "inflammation" of white adipose tissue (WAT) 33 [41]. The expression and function of MB regulators like NRF1, NRF2, and TFAM, which 34 are involved in the replication and transcription of mtDNA, are decreased as a result of 35 lower SIRT1 expression and an unregulated downstream effector [42]. 36

In mice with cardiomyopathy, obesity leads to metabolic abnormalities such as insu-37 lin resistance and intracellular low-grade inflammation, as well as increased oxidative 38 stress and mitochondrial dysfunction [43], [44]. Only diabetic mice had low amounts of 39 ATP synthase and, complexes II and III in adipocytes when the expression of mitochon-40 drial proteins in the liver, muscle, and adipocytes of normal, obese, and diabetic mice was 41 compared. Furthermore, abnormal mitochondrial shape, reduced mtDNA content, and 42 elevated rates of -oxidation and respiration were observed in obese and diabetic mouse 43 adipocytes, indicating a significant mitochondrial malfunction. Obese mice had skeletal 44 muscle that displayed altered mitochondrial dynamic behavior, including decreased mi-45 tochondrial respiratory capacity, low ATP content, increased fission (increased Fis1 and 46 Drp1 protein concentrations), and reduced fusion (increased Mfn1 and Mfn2 protein con-47 centrations) [45]. Table 2. 48

Bariatric Surgery for Pediatric Patients with Severe Obesity

Severe childhood and adolescent obesity is a growing public health concern in the 50 United States. Unfortunately, there are few effective treatments for severe obesity. In the 51

pediatric population, the use of metabolic and bariatric surgery provides evidence-based, 1 effective treatment of extreme obesity and concomitant comorbid disorders. [46]. Bariatric surgery has emerged as one of the most successful and long-lasting treatment options 3 for morbid obesity and associated comorbidities in terms of weight loss and glycemic control [47]. 5

Surprisingly, weight loss produced by bariatric surgery has been demonstrated to 6 promote mitochondrial biogenesis, whereas weight loss mediated by diet has not im-7 proved mitochondrial dysfunction [48]. Furthermore, bariatric surgery may be linked to a 8 reduction in renal tubular injury, as measured by the level of kidney injury molecule-1 in 9 obese patients [49]. Several studies have also found that bariatric surgery is superior to 10 non-surgical therapies for improving glycemic and metabolic characteristics in people 11 with T2DM who are obese [50]. In addition, in an obese rat model, bariatric surgery 12 greatly reduced chromosomal damage [51]. 13

Figures, Tables and Schemes

Figure 1. depicts the pathophysiology of childhood obesity and its adult consequences. 16

Figure 2. In the mitochondria, several different protein complexes are involved in mitochondrial2respiration: The inner mitochondrial membrane held I-4 complexes. These complexes produce a3proton gradient (H+) by successively moving electrons (e). This gradient is subsequently utilized by4Complex V (ATP synthase) to phosphorylate ADP to ATP.5

Figure 3. The relation between oxidative stress, peroxisomal, and mitochondrial dysfunction.

6 7

Figure 4. Summary of gut hormones involved in appetite regulation. Ghrelin, the orexigenic hormone2mone in green, is released from the stomach and stimulates food intake. The anorexigenic hormones3shown in red (Cholecystokinin (CCK), Pancreatic Polypeptide (PP), Peptide YY (PYY) and Gluca-4gon-Like Peptide 1 (GLP-1)) are released from various organs in the gastrointestinal system and5work together to decrease food intake by slowing gastric motility, emptying and reducing acid and6pancreatic secretions [18].7

 Table 1. Summary of the common factors contributing in the development of pediatric obesity.
 8

Factors	Common examples	Mechanism
Genetic factors	e.g. Prader-Willi syndrome,	Hypotonia, mental retardation, short stature, hypogonadism, hy- perphagia, and obesity. Caused by a lack of expression of genes on chromosome 15q11-13 that are imprinted to be expressed only on the paternally inherited copy of the chromosome.
Endocrinal dys- function	Thyroid dysfunction, growth hor- mone insufficiency or resistance, and cortisol excess Pseudohypoparathyroidism Polycystic ovarian syndrome (PCOS) is thought to be a result of, but also a contributor to, obesity.	Metabolic imbalances in the men- tioned endocrinal disorders are the mechanisms of the obesity encoun- tered in these disorders.
Hypothalamic dis- orders	Congenital or acquired	Infiltrative illness, tumors, or their treatment aftereffects commonly results in the development of an obesity syndrome marked by fast, unremitting weight gain, which may be accompanied by severe hy- perphagia

Intrauterine prenatal diabetes expo-	Excess fetal insulin secretion in
sure.	gestational diabetes shares in the
Intrauterine exposure to increased	development of obesity in off-
mother adiposity.	spring.
Babies that are small for gestational	
age yet develop quickly may be at	
risk of childhood obesity.	
	Intrauterine prenatal diabetes expo- sure. Intrauterine exposure to increased mother adiposity. Babies that are small for gestational age yet develop quickly may be at risk of childhood obesity.

Table 2. Effects of obesity on mitochondrial structure and function in humans. 2

Tissue	Possible changes in mitochondrial structure and function
Adipocytes	decreased levels of PGC-1 decreased oxygen consumption, citrate synthase activity, and mtDNA content
Subcutaneous adi- pocytes	Reduced mtDNA content, upstream regulator hypermethylation at 96 of 130 CpG sites, reduced mtDNA-encoded transcripts (12S rRNA, 16S rRNA, COX1, ND5, CYTB), and OXPHOS subunit proteins (complex III-IV)
Adipose derived stromal stem cells	TBX15 was one of the most significantly hypomethylated genes, in- dicating altered DNA methylation.
Skeletal muscle	TCA cycle and complex II proteins are expressed more, while ATP synthase and complexes I and III proteins are expressed less.

References

- [1] Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol 2019;10:1607.
 https://doi.org/10.3389/fphys.2019.01607.
- Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflam mation to the Development of Type 2 Diabetes Mellitus. Compr Physiol 2018;9:1–58.
 https://doi.org/10.1002/cphy.c170040.
- [3] Ward ZJ, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simulation of Growth Trajec tories of Childhood Obesity into Adulthood. Http://DxDoiOrg/101056/NEJMoa1703860 2017.
 https://doi.org/10.1056/NEJMoa1703860.
- [4] Lahera V, de Las Heras N, López-Farré A, Manucha W, Ferder L. Role of Mitochondrial Dysfunction
 in Hypertension and Obesity. Curr Hypertens Rep 2017;19:11. https://doi.org/10.1007/s11906-017 14 0710-9.
- [5] Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. Front Pain Res (Lausanne) 2022;3:1013577.
 https://doi.org/10.3389/fpain.2022.1013577.
- [6] Nicolson GL. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. 19 Integr Med (Encinitas) 2014;13:35–43.
 20
- [7] Rome ES. Obesity prevention and treatment. Pediatr Rev 2011;32:363–72; quiz 373. 21 https://doi.org/10.1542/pir.32-9-363. 22
- [8] Sanyaolu A, Okorie C, Qi X, Locke J, Rehman S. Childhood and Adolescent Obesity in the United States: 23
 A Public Health Concern. Glob Pediatr Health 2019;6:2333794X19891305. 24
 https://doi.org/10.1177/2333794X19891305. 25

[9]

1

38

39

2011;121:2111–7. https://doi.org/10.1172/JCI57132.	2
[10] Cornejo MP, Hentges ST, Maliqueo M, Coirini H, Becu-Villalobos D, Elias CF. Neuroendocrine Regu-	3
lation of Metabolism. J Neuroendocrinol 2016;28. https://doi.org/10.1111/jne.12395.	4
[11] Lakshman R, Elks CE, Ong KK. CHILDHOOD OBESITY. Circulation 2012;126:1770-9.	5
https://doi.org/10.1161/CIRCULATIONAHA.111.047738.	6
[12] Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Țiț DM, Pașcalău N, et al. The Link between	7
Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alz-	8
heimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022;11:2167.	9
https://doi.org/10.3390/antiox11112167.	10
[13] Robb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C, et al. Control of mitochondrial superoxide	11
production by reverse electron transport at complex I. J Biol Chem 2018;293:9869-79.	12
https://doi.org/10.1074/jbc.RA118.003647.	13
[14] Albano GD, Gagliardo RP, Montalbano AM, Profita M, Overview of the Mechanisms of Oxidative Stress:	14

Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest

- [14] Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: 14 Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022;11:2237. 15 https://doi.org/10.3390/antiox11112237. 16
- [15] Kong Y, Trabucco SE, Zhang H. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol 2014;39:86–107. https://doi.org/10.1159/000358901.
 18
- [16] Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system 19 design for enabling precision oncology. Signal Transduct Target Ther 2022;7:379. 20 https://doi.org/10.1038/s41392-022-01243-0.
- [17] Fransen M, Lismont C, Walton P. The Peroxisome-Mitochondria Connection: How and Why? Int J Mol Sci 2017;18:E1126. https://doi.org/10.3390/ijms18061126.
- [18] Alhabeeb H, AlFaiz A, Kutbi E, Alshahrani D, Alsuhail A, Alrajhi S, et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021;13:481.
 https://doi.org/10.3390/nu13020481.
- Borer KT, Lin P-J, Wuorinen E. Timing of Meals and Exercise Affects Hormonal Control of Glucoregulation, Insulin Resistance, Substrate Metabolism, and Gastrointestinal Hormones, but Has Little Effect
 on Appetite in Postmenopausal Women. Nutrients 2021;13:4342. https://doi.org/10.3390/nu13124342.
- [20] Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr 30 2020;8:581461. https://doi.org/10.3389/fped.2020.581461.
 31
- [21] LifeCycle Project-Maternal Obesity and Childhood Outcomes Study Group, Voerman E, Santos S, Inskip H, Amiano P, Barros H, et al. Association of Gestational Weight Gain With Adverse Maternal and Infant Outcomes. JAMA 2019;321:1702–15. https://doi.org/10.1001/jama.2019.3820.
 34
- [22] Kral JG, Biron S, Simard S, Hould F-S, Lebel S, Marceau S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006;118:e1644-1649. https://doi.org/10.1542/peds.2006-1379.
- [23] Ong KK, Loos RJF. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 2006;95:904–8. https://doi.org/10.1080/08035250600719754.
- [24] Alejandro EU, Mamerto TP, Chung G, Villavieja A, Gaus NL, Morgan E, et al. Gestational Diabetes
 Mellitus: A Harbinger of the Vicious Cycle of Diabetes. Int J Mol Sci 2020;21:5003.
 https://doi.org/10.3390/ijms21145003.
- [25] Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The Pathophysiology of Gestational Diabetes Mellitus. Int J Mol Sci 2018;19:3342. https://doi.org/10.3390/ijms19113342.
- [26] Schwartz R, Gruppuso PA, Petzold K, Brambilla D, Hiilesmaa V, Teramo KA. Hyperinsulinemia and 45 macrosomia in the fetus of the diabetic mother. Diabetes Care 1994;17:640–8. https://doi.org/10.2337/di-46 acare.17.7.640.
- [27] Tam WH, Ma RCW, Ozaki R, Li AM, Chan MHM, Yuen LY, et al. In Utero Exposure to Maternal 48 Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care 2017;40:679–86. 49 https://doi.org/10.2337/dc16-2397. 50

- [28] Lee SC, Pu YB, Chow CC, Yeung VT, Ko GT, So WY, et al. Diabetes in Hong Kong Chinese: evidence
 for familial clustering and parental effects. Diabetes Care 2000;23:1365–8. https://doi.org/10.2337/dia care.23.9.1365.
- [29] Boudina S, Graham TE. Mitochondrial function/dysfunction in white adipose tissue. Exp Physiol 2014;99:1168–78. https://doi.org/10.1113/expphysiol.2014.081414.
- [30] Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic
 6 ER-mitochondria contact sites leads to calcium dependent mitochondrial dysfunction in obesity. Nat Med
 7 2014;20:1427–35. https://doi.org/10.1038/nm.3735.
- [31] Hansen M, Lund MT, Gregers E, Kraunsøe R, Van Hall G, Helge JW, et al. Adipose tissue mitochondrial 9 respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity (Silver Spring) 10 2015;23:2022–9. https://doi.org/10.1002/oby.21223.
- [32] Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab
 2012;15:595–605. https://doi.org/10.1016/j.cmet.2012.04.010.
 13
- [33] McGinnis CD, Jennings EQ, Harris PS, Galligan JJ, Fritz KS. Biochemical Mechanisms of Sirtuin-Directed Protein Acylation in Hepatic Pathologies of Mitochondrial Dysfunction. Cells 2022;11:2045.
 https://doi.org/10.3390/cells11132045.
- [34] Waddell J, Banerjee A, Kristian T. Acetylation in Mitochondria Dynamics and Neurodegeneration. Cells 17 2021;10:3031. https://doi.org/10.3390/cells10113031.
- [35] Mone P, Morgante M, Pansini A, Jankauskas SS, Rizzo M, Lombardi A, et al. Effects of insulin resistance on mitochondrial (dys)function. Atherosclerosis 2022;341:52–4. https://doi.org/10.1016/j.atherosclerosis.2021.11.026.
- [36] Kobayashi M, Deguchi Y, Nozaki Y, Higami Y. Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue. Int J Mol Sci 2021;22:6025.
 https://doi.org/10.3390/ijms22116025.
- [37] Schwärzler J, Mayr L, Radlinger B, Grabherr F, Philipp M, Texler B, et al. Adipocyte GPX4 protects 25 against inflammation, hepatic insulin resistance and metabolic dysregulation. Int J Obes (Lond) 2022. 26 https://doi.org/10.1038/s41366-022-01064-9. 27
- [38] Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2011;1813:1269–78. https://doi.org/10.1016/j.bbamcr.2010.09.019.
- [39] Cantó C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20:98–105. https://doi.org/10.1097/MOL.0b013e328328d0a4.
- [40] Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, et al. SirT1 gain of function 32 increases energy efficiency and prevents diabetes in mice. Cell Metab 2008;8:333–41. 33 https://doi.org/10.1016/j.cmet.2008.08.014.
- [41] Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT, et al. SirT1 regulates adipose tissue inflammation. Diabetes 2011;60:3235–45. https://doi.org/10.2337/db11-0616.
 36
- [42] Shoar Z, Goldenthal MJ, De Luca F, Suarez E. Mitochondrial DNA content and function, childhood 37 obesity, and insulin resistance. Endocr Res 2016;41:49–56. 38 https://doi.org/10.3109/07435800.2015.1068797. 39
- [43] Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res 2017;113:389–98. 40 https://doi.org/10.1093/cvr/cvx012. 41
- [44] Guo CA, Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.
 J Endocrinol 2017;233:R131–43. https://doi.org/10.1530/JOE-16-0679.
 43
- [45] Kras KA, Langlais PR, Hoffman N, Roust LR, Benjamin TR, De Filippis EA, et al. Obesity modifies the stoichiometry of mitochondrial proteins in a way that is distinct to the subcellular localization of the mitochondria in skeletal muscle. Metabolism 2018;89:18–26. 46 https://doi.org/10.1016/j.metabol.2018.09.006. 47
- [46] Michalsky MP, Inge TH, Jenkins TM, Xie C, Courcoulas A, Helmrath M, et al. Cardiovascular Risk
 Factors After Adolescent Bariatric Surgery. Pediatrics 2018;141:e20172485.
 https://doi.org/10.1542/peds.2017-2485.

5

28

29

30

- [47] Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus 1 intensive medical therapy in obese patients with diabetes. N Engl J Med 2012;366:1567–76. 2 https://doi.org/10.1056/NEJMoa1200225. 3
- [48] Hansen M, Lund MT, Gregers E, Kraunsøe R, Van Hall G, Helge JW, et al. Adipose tissue mitochondrial 4 respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity (Silver Spring) 5 2015;23:2022–9. https://doi.org/10.1002/oby.21223.
- [49] Kwon SH. Changes in kidney function markers after bariatric surgery in morbidly obese patients. Kidney Res Clin Pract 2020;39:115–7. https://doi.org/10.23876/j.krcp.20.058.
- [50] Madsen LR, Baggesen LM, Richelsen B, Thomsen RW. Effect of Roux-en-Y gastric bypass surgery on
 diabetes remission and complications in individuals with type 2 diabetes: a Danish population-based
 matched cohort study. Diabetologia 2019;62:611–20. https://doi.org/10.1007/s00125-019-4816-2.
- [51] Bankoglu EE, Seyfried F, Rotzinger L, Nordbeck A, Corteville C, Jurowich C, et al. Impact of weight
 loss induced by gastric bypass or caloric restriction on oxidative stress and genomic damage in obese
 Zucker rats. Free Radic Biol Med 2016;94:208–17. https://doi.org/10.1016/j.freeradbiomed.2016.02.033.