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Abstract: Here, potential inhibitors of the SARS-CoV-2 papain-like protease (PLpro) are reported. A 
drug molecule (PLpro-50), designed de novo using generative neural networks, interacts with PLpro 
via hydrogen bonding, forming a salt bridge, and π-π stacking, making it a promising drug against 
the PLpro. PLpro-50 has excellent ADMET profile with good absorbability, high clearance, and low 
toxicity. Molecular dynamics analysis revealed the stability of the receptor-ligand complex of PLpro-
50 and PLpro. Organic retrosynthesis study showed the feasibility of PLpro-50 to be synthesized using 
low-cost starting materials. Further studies should be done to determine whether the determined 
drug candidates are efficacious in treating COVID-19 infections. 
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1. Introduction 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative 

agent of the Coronavirus Disease 2019 (COVID-19) [1], caused an ongoing global pan-
demic that claimed over 6.9 million lives to date. Moreover, several global strategies were 
launched to find therapeutic agents against COVID-19 [2]. For example, known drugs 
could be repurposed to inhibit the progression of SARS-CoV-2 and reduce patient mor-
tality [3,4]. Among the drugs used in the WHO solidarity trials are the antiviral drugs 
remdesivir, hydroxychloroquine, and a combination of lopinavir/ritonavir. However, 
their studies showed these drugs had little or no effect on overall mortality, ventilation 
initiation, and the hospital stay duration in hospitalized patients [5]. As such, there re-
mains a need to discover possible therapeutic drugs inhibiting SARS-CoV-2. 

Several strategies are available to develop drugs that target SARS-CoV-2 [6]. For ex-
ample, drugs could be developed to inhibit the spike protein of SARS-CoV-2 from pre-
venting its viral entry and halting reproduction. Hydroxychloroquine and investigational 
neutralizing antibodies use this principle. Another strategy is to halt the replication of 
SARS-CoV-2 by inhibiting the RNA polymerase, which plays a vital role in replicating 
and transcribing viral genomic RNA. The antiviral drugs Remdesivir and Favipinavir are 
promising candidates that use this strategy. A third strategy involves the inhibition of the 
proteases responsible for cleaving the polyproteins essential for viral replication. Such is 
the case for the antiviral drugs lopinavir and ritonavir [7]. 

Among these three key targets, the papain-like protease (PLpro) of coronaviruses is 
among the best-characterized drug targets for drug discovery. Together with the chymo-
trypsin-like protease (3CLpro), they are responsible for processing the polyproteins to gen-
erate a functional replicase complex, thus enabling viral spread. In addition, PLpro can also 
cleave the proteinaceous post-translational modifications on host proteins, which 
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provides an evasion mechanism against the host antiviral immune responses. Given its 
role in viral reproduction, inhibiting this enzyme would attenuate viral RNA synthesis 
and halt the replication of SARS-CoV-2 [8,9]. 

Drug discovery and development is a long and expensive process full of risks and 
failures. It requires a multi-disciplinary collaboration and a very high investment cost. 
However, rapid growth in computational drug design, high throughput screening, and 
combinatorial chemistry allowed us to shorten the pipeline by focusing only on promising 
lead candidates. Computational drug discovery is generally categorized into structure-
based drug design (SBDD), ligand-based drug design (LBDD), and sequence-based ap-
proaches [10]. Structure-based drug design focuses on identifying active drug candidates 
(hit identification) and determining biologically active and safe candidates (lead optimi-
zation). This can be done by performing high-throughput virtual screening of compound 
libraries or designing drug molecules de novo [11–13]. On the other hand, ligand-based 
drug design focuses on the quantitative structure-activity relationship (QSAR), pharma-
cophore modeling, molecular field analysis, and 2D and/or 3D similarity assessment to 
rationally design molecules suitable for lead discovery and optimization [10,14,15].  

Several studies have already reported candidate drug molecules based on screening 
several compound libraries [16,17]. Here, we report some potential SARS-CoV-2 papain-
like protease inhibitors discovered by de novo drug design. These drugs may open new 
frontiers to possible therapies against COVID-19. 

2. Computational Details 
2.1. Target Preparation 

The high-resolution crystal structure of PLpro (PDB 6WZU) [18] was obtained from 
the Protein Data Bank. First, its structure was pre-processed to get its minimum-energy 
configuration which was used for subsequent docking calculations. Specifically, missing 
hydrogens were added, correct bond orders were checked and assigned, correct protona-
tion states were predicted, and hydrogen bonds were optimized through systematic and 
cluster-based approaches. In addition, restrained minimization was also applied to relax 
bonds, angles, and overlaps within the structure. 

2.2. De novo Drug Design 
De novo drug design against the binding site of PLpro was implemented using the e-

LEA3D web server [19]. Lipinski’s Rule of Five [20] was used as a constraint to ensure that 
the molecules that will be designed are drug-like [21]. A genetic algorithm was imple-
mented with a starting population of FDA-approved drugs with a maximum population 
size of 40 molecules. First, the fitness of each candidate molecule is evaluated using a fit-
ness function. Then, selection criteria are applied to choose the best candidates for breed-
ing. Finally, breeding functions, i.e., crossover and mutation, are applied to the selected 
candidates to produce the next generation of solutions. These daughter solutions now be-
come the parent solutions, and the algorithm is repeated until convergence is reached. The 
maximum number of generations was limited to 50 cycles to reduce computational costs 
[19]. 

De novo drug design was also implemented using the LIGANN web server to gener-
ate a library of drug-like molecules that targets PLpro through generative neural networks. 
In particular, a generative adversarial network was used to produce complementary lig-
and shapes in a multimodal fashion. Then a shape captioning network decodes the ligand 
shapes into SMILES strings [22]. Finally, the generated library of SMILES was converted 
to a structure file using Open Babel v. 3.1.1 [23]. This chemical library was then docked 
against the binding site of PLpro using the same docking protocol described above as im-
plemented in the LEA3D web server. 
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2.3. Molecular Dynamics 
Ligand-protein interactional binding mode and the dynamical unbinding process by 

performing molecular dynamics calculations on the top-performing ligand obtained from 
de novo drug design. The calculations were implemented using the Ligand and Receptor 
Molecular Dynamics (LARMD) webserver [24] for each protein-ligand complex structure. 
The antechamber module and the Tleap module of the AMBER16 program [25] were used 
to assign the bcc charges for the ligand atoms and construct the complex’s coordinate and 
topology files. The AMBER ff14SB force field [26] and gaff force field [27,28] were used 
for amino acid residues and ligands. The structures are solvated using an octahedron box 
of TIP3P waters [29] extended at least 10 Å in each direction from the solute [30]. Na+ 
and/or Cl− ions are added to the system as counter ions. Four-step minimization of the 
system was achieved using the Sander module in AMBER16. Two thousand steps steepest 
descent method and 3000 steps conjugated gradient method were used for each minimi-
zation step. The system was then heated from 10 to 300 K in 30 ps using an NVT ensemble, 
followed by dynamics run at 300 K and 1 atm for 4 ns. All dynamics runs were done using 
the Pmemd module of AMBER16. MD analyses were done using the Cpptraj module of 
AMBER16. MDTraj was used to calculate nonnative contact [31], and Bio3d was utilized 
to analyze PCA and residue cross-correlation [32] as implemented in the LARMD server. 

2.4. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Study 
All top-performing drug candidates were analyzed for their ADMET properties us-

ing the ADMETlab 2.0 platform. ADMETlab 2.0 is based on 53 predictive models from a 
comprehensively collected database of 288,867 molecules. The library of input molecules 
is fed into a Multi-task Graph Attention (MGA) framework to generate the ADMET pro-
files of each entry based on the trained regression models [33]. Only those that pass the 
following criteria were deemed promising lead molecules: good human intestinal absorp-
tion probability (p > 0.7), low blood-brain barrier probability (p < 0.7), low mutagenicity 
(p < 0.3), low acute toxicity (p < 0.3), and low carcinogenicity (p < 0.3). 

2.5. Organic Retrosynthesis 
Computer-aided organic synthesis (CAOS) of the top-performing de novo – generated 

inhibitors was done using spaya.ai – a web-based retrosynthesis tool that uses artificial 
intelligence to map possible reaction routes toward the desired target molecule 

3. Results and Discussion 
3.1. Structure of Papain-like Protease 

The minimized structure of the papain-like protease of SARS-CoV-2 is shown in Fig-
ure S1. Structurally, the papain-like protease of SARS-CoV-2 consists of 315 amino acid 
residues folded into four sub-domains and resembles the papain-like protease of SARS-
CoV, the causative agent of a severe acute respiratory syndrome (SARS). The enzyme’s 
active site is located at the interface between C111, H272, and D286, forming its catalytic 
triad. Other catalytically important residues are W93, W106, D108, and N109 [34]. 

3.2. De novo Drug Design 
In our attempt to discover novel drug candidates that target the papain-like protease 

of SARS-CoV-2, de novo drug design was performed using a genetic algorithm starting 
from a population of FDA-approved drugs. After fifty generations, we arrived at 
(2E,4E,6Z,8E)-9-[(2R,3R,4S,6R)-6-[3-(3-carboxypropyl-4-methylphenyl-3-hydroxy-2-(hy-
droxymethyl)oxan-4-yl]-3,7-dimethylnona-2,4,6,8-tetraenoic acid (PLpro-50) as a potential 
inhibitor of PLpro. The evolution of the solution to the genetic algorithm is shown in Figure 
S2(a). Meanwhile, the 2D structure of PLpro-50 is shown in Figure S2(b). PLpro-50 forms 
several interactions with PLpro, as shown in Figure 1. Notably, its hydroxyl groups form 
hydrogen bonds with N109 and G27. One of its carboxylic groups forms hydrogen bonds 
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with W106 and A288, while the other carboxylic group forms a salt bridge with K274. 
Moreover, its aromatic ring can interact with W106 through π-π stacking. The presence of 
several interactions between PLpro-50 and PLpro makes the complex stable, with a docking 
score of 95.19%. 

.  
(a) (b) 

Figure 1. Interaction of PLpro with PLpro-50: (a) structure of the PLpro-PLpro-50 complex; (c) ligand-
interaction diagram. 

. 

  
(a) (b) 

Figure 2. Interaction of PLpro with 6WZU-1: (a) structure of the PLpro-6WZU-1 complex; (c) ligand-
interaction diagram. 

. 

  
(a) (b) 

Figure 3. Interaction of PLpro with 6WZU-11: (a) structure of the PLpro-6WZU-11 complex; (c) ligand-
interaction diagram. 

In another method, 722 drug-like molecules were generated using generative neural 
networks. This is more robust than using a genetic algorithm with a starting population 
of FDA-approved drugs since the former can capture a wider area within the chemical 
space. Figure S1 shows the top-performing molecules after docking the generated 
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chemical library against the binding site of PLpro. Among them, only 6WZU-1 and 6WZU-
11 have ideal ADMET profiles. Hence, we further focused on investigating the inhibitory 
properties of these two lead molecules. 

6WZU-1, whose IUPAC name is (2-phenylethyl)[2-(pyridin-2-yl)ethyl]{[(3R)-1-{[(3S)-
1,2,3,4-tetrahydro-1,5-naphthyridin-3-yl]methyl}piperidin-3-yl]methyl}amine, forms a 
hydrogen bond with D286. Meanwhile, 6WZU-11 or [(2R)-6-aminohexan-2-yl][(1R)-1-[5-
(1-benzylpiperidin-4-yl)-1,3-thiazol-2-yl]ethyl]amine forms hydrogen bonds with D108 
and N109. Its five-membered ring also interacts with W106 via π-π stacking. The corre-
sponding docked structures of these two molecules are shown in Figure 2 and Figure 3, 
respectively. Due to these ligand-residue interactions, we see that 6WZU-1 and 6WZU-11 
have the potential to inhibit PLpro-50. 

3.3. Molecular Dynamics Analysis 
To further understand the inhibitory effect of PLpro-50, we performed a molecular 

dynamics simulation on the docked protein-ligand structure. Shown in Figure S4 are the 
RMSD profile and histograms of the docked structure over time. Our data revealed that 
the docked structure equilibrated well after 3 ns of MD simulation with a receptor average 
RMSD of 1.2379 ± 0.2578 Å and a ligand average RMSD of 2.8021 ± 0.7697 Å. The RMSD 
values of the receptor and the ligand are normally distributed. The hydrogen bonds be-
tween PLpro-50 and the protease residues W106 and A288 comprise most of the population 
of hydrogen bonds formed and are well-maintained throughout the dynamics run, indi-
cating the docked stability structure. A strong binding energy (ΔGPB = -7.63 kcal mol-1 and 
ΔGGB = -7.57 kcal mol-1) was calculated for the docked PLpro-50 complex, indicating the 
good inhibitory property of PLpro-50. 

 Principal component analysis of PLpro-50 binding (Figure S5) and unbinding (Figure 
S6) and their corresponding dynamic cross-correlation analysis (Figure S7) were deter-
mined based on their corresponding MD trajectories. Only the top three principal compo-
nents are presented in the figure because these are generally sufficient to capture approx-
imately 50% of the total variance in a given family of structures [29]. Our results show no 
significant difference between the conformations of PLpro-50 during the ligand-protein in-
teractional binding and the dynamical unbinding process, indicating the stability of the 
resulting ligand-protein structure. This further reinforces our hypothesis that PLpro-50 
could inhibit SARS-CoV-2’s papain-like protease. 

3.4. Organic Retrosynthesis 
The main issue with the de novo design of ligands for inhibiting a particular protein 

is whether they can be synthesized in the real world. Therefore, we calculated the syn-
thetic accessibility scores (SAscore) of all the compounds in this study to ascertain their 
synthetic feasibility. SAscore is a scoring function based on a combination of fragment 
contributions and a complexity penalty [35]. Our results showed that all of our top-per-
forming ligands have excellent synthetic accessibility scores (SAscore < 6), indicating that 
it is possible to synthesize these molecules. 

To demonstrate that our top de novo – generated drug-like molecules can be synthe-
sized in the laboratory, we employed artificial intelligence to map out possible reaction 
routes to synthesize the said molecules using commercially available starting materials. 
For example, PLpro-50 may be synthesized using ten major reactions involving 3-methyl 
but-2-enal, 3-methyl but-2-enoic acid, 4-butyrolactone, 3,4-dihydro-2H-pyran-4-one, and 
toluene as starting materials, as outlined in Scheme S1. Meanwhile, 6WZU-1 may be syn-
thesized using 2-(3-nitropyridin-2-yl)acetic acid, acetophenone, 1-(piperidin-3-yl)meth-
anamine, and 2-hydroxypyridine as starting materials involving 11 major chemical steps 
as shown in Scheme S2. Moreover, 6WZU-11 may be synthesized using acetyl chloride, 
hexane-1,5-diamine, methoxy(methyl)amine, benzyl alcohol, 4-hydroxy-piperidine, and 
1,3-thiazole as starting materials. The entire pathway comprises eight major reactions, as 
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shown in Scheme S3. To further assist the synthesis of our de novo – designed drug-like 
molecules, we also included their corresponding predicted 1H NMR and 13C NMR in Fig-
ure S14 and Figure S15, respectively. NMR predictions were made using ChemAxon’s 
Marvin Sketch 21.4.0. 

4. Conclusions 
Potential inhibitors of the SARS-CoV-2 papain-like protease (PLpro) were discovered 

by de novo drug design. We report a drug molecule (PLpro-50) designed de novo by per-
forming a genetic algorithm search using an initial population of FDA-approved drugs. 
After fifty generations, PLpro-50 emerged as a strong candidate and demonstrated to be a 
potentially better inhibitor against PLpro than the top-performing FDA-approved drugs. 
We also designed a chemical library of potential inhibitors of PLpro, of which 6WZU-1 and 
6WZU-11 emerged superior over the other drug-like molecules. These drug molecules 
merit further studies to demonstrate whether their in-silico performance translates to clin-
ical efficacy and safety.  

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx, Figure S1. Structure of the main protease (PLpro) showing its (a) secondary 
structure and (b) catalytic triad (binding pocket).; Figure S2. (a) Evolution of docking score during 
the de novo design of PLpro inhibitors using genetic algorithm; (b) chemical structure of PLpro-50 
drawn using ChemAxon Marvin Suite.; Figure S3. Top-performing drug-like molecules to inhibit 
PLpro.; Figure S4. (a) RMSD profile of the docked PLpro-50 ligand in PLpro, (b) RMSD histogram of 
the receptor, and (c) RMSD histogram of the ligand.; Figure S5. (a) Principal Component Analysis 
(PCA) for the MD trajectory of PLpro-50 binding into PLpro. (b) Simple clustering in PC subspace.; 
Figure S6. (a) Principal Component Analysis (PCA) for the MD trajectory of the unbinding process 
between PLpro-50 and PLpro.; Figure S7. Dynamical residue cross-correlation map for the MD trajec-
tory of the (a) binding process and (b) unbinding process of the receptor-ligand complex involving 
PLpro-50 docked in PLpro.; Figure S8. Residue-wise loading for (a) PC1, (b) PC2, and (c) PC3 of the 
binding process of the receptor-ligand complex involving PLpro-50 docked in PLpro. Residue-wise 
loading for (d) PC1, (e) PC2, (f) PC3 of the unbinding process of the receptor-ligand complex involv-
ing PLpro-50 docked in PLpro.; Table S1. ADMET profiles of top-performing FDA-approved drugs as 
PLpro inhibitors.; Table S2. Interacting residues of PLpro with its potential inhibitors.; Figure S9. (a) 
RMSD profile of the docked 6WZU-11 in PLpro. and (c) RMSD histogram of the ligand (mean RMSD 
= 2.0645 ± 0.0057 Å).; Figure S10. (a) Principal Component Analysis (PCA) for the MD trajectory of 
6WZU-11 binding into PLpro. (b) Simple clustering in PC subspace.; Figure S11. (a) Principal Com-
ponent Analysis (PCA) for the MD trajectory of the unbinding process between 6WZU-11 and PLpro. 
(b) Simple clustering in PC subspace.; Figure S12. Dynamical residue cross-correlation map for the 
MD trajectory of the (a) binding process and (b) unbinding process of the receptor-ligand complex 
involving 6WZU-11 docked in PLpro.; Figure S13. Residue-wise loading for (a) PC1, (b) PC2, (c) PC3 
of the binding process of the receptor-ligand complex involving 6WZU-11 docked in PLpro. Residue-
wise loading for (d) PC1, (e) PC2, (f) PC3 of the unbinding process of the receptor-ligand complex 
involving PLpro-50 docked in PLpro.; Figure S14. Predicted 1H NMR of (a) PLpro-50, (b) 6WZU-1, and (c) 
6WZU-11.; Figure S15. Predicted 13C NMR at 500.0 MHz of (a) PLpro-50, (b) 6WZU-1, and (c) 6WZU-11.; 
Scheme S1. Proposed synthesis route for PLpro-50.; Scheme S2. Proposed synthesis route for 6WZU-1.; 
Scheme S3. Proposed synthesis route for 6WZU-11. 

Author Contributions: Conceptualization, E.C.R.L.; methodology, E.C.R.L.; software, E.C.R.L. val-
idation, E.C.R.L.; formal analysis, E.C.R.L.; investigation, E.C.R.L.; resources, E.C.R.L.; data cura-
tion, E.C.R.L.; writing—original draft preparation, E.C.R.L.; writing—review and editing, E.C.R.L.; 
visualization, E.C.R.L.; supervision, E.C.R.L.; project administration, E.C.R.L.; funding acquisition, 
E.C.R.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in the Supplementary 
Material. 



Med. Sci. Forum 2023, 3, x 7 of 8 
 

 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. A.E. Gorbalenya, S.C. Baker, R.S. Baric, R.J. de Groot, C. Drosten, A.A. Gulyaeva, B.L. Haagmans, C. Lauber, A.M. Leontovich, 

B.W. Neuman, D. Penzar, S. Perlman, L.L.M. Poon, D. V. Samborskiy, I.A. Sidorov, I. Sola, J. Ziebuhr, The species Severe acute 
respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat Microbiol. 5 (2020) 536–544. 
https://doi.org/10.1038/s41564-020-0695-z. 

2. A. Bouyahya, N. El Omari, N. Elmenyiy, M. Hakkour, A. Balahbib, F.E. Guaouguaou, T. Benali, A. El Baaboua, O. Belmehdi, 
Therapeutic strategies of COVID-19: From natural compounds to vaccine trials, 2021. 
https://doi.org/10.33263/BRIAC111.83188373. 

3. A. Hazafa, K. ur-Rahman, I. ul Haq, N. Jahan, M. Mumtaz, M. Farman, H. Naeem, F. Abbas, M. Naeem, S. Sadiqa, S. Bano, The 
broad-spectrum antiviral recommendations for drug discovery against COVID-19, Drug Metab Rev. 52 (2020) 408–424. 
https://doi.org/10.1080/03602532.2020.1770782. 

4. H. Yousefi, L. Mashouri, S.C. Okpechi, N. Alahari, S.K. Alahari, Repurposing existing drugs for the treatment of COVID-
19/SARS-CoV-2 infection: A review describing drug mechanisms of action, Biochem Pharmacol. 183 (2021) 114296. 
https://doi.org/10.1016/j.bcp.2020.114296. 

5. WHO Solidarity Trial Consortium, Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results, New 
England Journal of Medicine. 384 (2021) 497–511. https://doi.org/10.1056/nejmoa2023184. 

6. P. Chellapandi, S. Saranya, Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery, Medicinal Chem-
istry Research. 29 (2020) 1777–1791. https://doi.org/10.1007/s00044-020-02610-8. 

7. G.U. Jeong, H. Song, G.Y. Yoon, D. Kim, Y.C. Kwon, Therapeutic Strategies Against COVID-19 and Structural Characterization 
of SARS-CoV-2: A Review, Front Microbiol. 11 (2020) 1–11. https://doi.org/10.3389/fmicb.2020.01723. 

8. D. Shin, R. Mukherjee, D. Grewe, D. Bojkova, K. Baek, A. Bhattacharya, L. Schulz, M. Widera, A.R. Mehdipour, G. Tascher, P.P. 
Geurink, A. Wilhelm, G.J. van der Heden van Noort, H. Ovaa, S. Müller, K.P. Knobeloch, K. Rajalingam, B.A. Schulman, J. 
Cinatl, G. Hummer, S. Ciesek, I. Dikic, Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity, Nature. 
587 (2020) 657–662. https://doi.org/10.1038/s41586-020-2601-5. 

9. B.K. Maiti, Can Papain-like Protease Inhibitors Halt SARS-CoV-2 Replication?, ACS Pharmacol Transl Sci. 3 (2020) 1017–1019. 
https://doi.org/10.1021/acsptsci.0c00093. 

10. S.S. Ou-Yang, J.Y. Lu, X.Q. Kong, Z.J. Liang, C. Luo, H. Jiang, Computational drug discovery, Acta Pharmacol Sin. 33 (2012) 
1131–1140. https://doi.org/10.1038/aps.2012.109. 

11. E.H.B. Maia, L.C. Assis, T.A. de Oliveira, A.M. da Silva, A.G. Taranto, Structure-Based Virtual Screening: From Classical to 
Artificial Intelligence, Front Chem. 8 (2020). https://doi.org/10.3389/fchem.2020.00343. 

12. E. Lionta, G. Spyrou, D. Vassilatis, Z. Cournia, Structure-Based Virtual Screening for Drug Discovery: Principles, Applications 
and Recent Advances, Curr Top Med Chem. 14 (2014) 1923–1938. https://doi.org/10.2174/1568026614666140929124445. 

13. M. Danishuddin, A.U. Khan, Structure based virtual screening to discover putative drug candidates: Necessary considerations 
and successful case studies, Methods. 71 (2015) 135–145. https://doi.org/10.1016/j.ymeth.2014.10.019. 

14. G. Tresadern, D. Bemporad, Modeling approaches for ligand-based 3D similarity, Future Med Chem. 2 (2010) 1547–1561. 
https://doi.org/10.4155/fmc.10.244. 

15. C. Acharya, A. Coop, J. E. Polli, A. D. MacKerell, Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the 
Conformationally Sampled Pharmacophore Approach, Current Computer Aided-Drug Design. 7 (2010) 10–22. 
https://doi.org/10.2174/157340911793743547. 

16. A. Gupta, C. Rani, P. Pant, V. Vijayan, N. Vikram, P. Kaur, T.P. Singh, S. Sharma, P. Sharma, Structure-Based Virtual Screening 
and Biochemical Validation to Discover a Potential Inhibitor of the SARS-CoV-2 Main Protease, ACS Omega. 5 (2020) 
acsomega.0c04808. https://doi.org/10.1021/acsomega.0c04808. 

17. M. Carli, G. Sormani, A. Rodriguez, A. Laio, Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease 
from the Analysis of Large-Scale Molecular Dynamics Simulations, J Phys Chem Lett. 12 (2020) 65–72. 
https://doi.org/10.1021/acs.jpclett.0c03182. 

18. J. Osipiuk, S.A. Azizi, S. Dvorkin, M. Endres, R. Jedrzejczak, K.A. Jones, S. Kang, R.S. Kathayat, Y. Kim, V.G. Lisnyak, S.L. Maki, 
V. Nicolaescu, C.A. Taylor, C. Tesar, Y.A. Zhang, Z. Zhou, G. Randall, K. Michalska, S.A. Snyder, B.C. Dickinson, A. Joachimiak, 
Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors, Nat Commun. 12 (2021) 1–
9. https://doi.org/10.1038/s41467-021-21060-3. 

19. D. Douguet, e-LEA3D: A computational-aided drug design web server, Nucleic Acids Res. 38 (2010) 615–621. 
https://doi.org/10.1093/nar/gkq322. 

20. C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods. 44 
(2000) 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6. 

21. L.Z. Benet, C.M. Hosey, O. Ursu, T.I. Oprea, BDDCS, the Rule of 5 and drugability, Adv Drug Deliv Rev. 101 (2016) 89–98. 
https://doi.org/10.1016/j.addr.2016.05.007. 

22. M. Skalic, J. Jiménez, D. Sabbadin, G. De Fabritiis, Shape-Based Generative Modeling for de Novo Drug Design, J Chem Inf 
Model. 59 (2019) 1205–1214. https://doi.org/10.1021/acs.jcim.8b00706. 

https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.33263/BRIAC111.83188373
https://doi.org/10.1080/03602532.2020.1770782
https://doi.org/10.1016/j.bcp.2020.114296
https://doi.org/10.1056/nejmoa2023184
https://doi.org/10.1007/s00044-020-02610-8
https://doi.org/10.3389/fmicb.2020.01723
https://doi.org/10.1038/s41586-020-2601-5
https://doi.org/10.1021/acsptsci.0c00093
https://doi.org/10.1038/aps.2012.109
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.1016/j.ymeth.2014.10.019
https://doi.org/10.4155/fmc.10.244
https://doi.org/10.2174/157340911793743547
https://doi.org/10.1021/acsomega.0c04808
https://doi.org/10.1021/acs.jpclett.0c03182
https://doi.org/10.1038/s41467-021-21060-3
https://doi.org/10.1093/nar/gkq322
https://doi.org/10.1016/S1056-8719(00)00107-6
https://doi.org/10.1016/j.addr.2016.05.007
https://doi.org/10.1021/acs.jcim.8b00706


Med. Sci. Forum 2023, 3, x 8 of 8 
 

 

23. N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: An Open chemical toolbox, J 
Cheminform. 3 (2011) 33. https://doi.org/10.1186/1758-2946-3-33. 

24. J.-F. Yang, F. Wang, Y.-Z. Chen, G.-F. Hao, G.-F. Yang, LARMD: integration of bioinformatic resources to profile ligand-driven 
protein dynamics with a case on the activation of estrogen receptor, Brief Bioinform. 00 (2019) 1–13. 
https://doi.org/10.1093/bib/bbz141. 

25. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The 
Amber biomolecular simulation programs, J Comput Chem. 26 (2005) 1668–1688. https://doi.org/10.1002/jcc.20290. 

26. J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, C. Simmerling, ff14SB: Improving the Accuracy of Protein 
Side Chain and Backbone Parameters from ff99SB, J Chem Theory Comput. 11 (2015) 3696–3713. 
https://doi.org/10.1021/acs.jctc.5b00255. 

27. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J Comput 
Chem. 25 (2004) 1157–1174. https://doi.org/10.1002/jcc.20035. 

28. B. Wang, K.M. Merz, A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic res-
onance chemical shifts for macromolecules, J Chem Theory Comput. 2 (2006) 209–215. https://doi.org/10.1021/ct050212s. 

29. D.J. Price, C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation, Journal of Chemical Physics. 
121 (2004) 10096–10103. https://doi.org/10.1063/1.1808117. 

30. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulat-
ing liquid water, J Chem Phys. 79 (1983) 926–935. https://doi.org/10.1063/1.445869. 

31. R.T. McGibbon, K.A. Beauchamp, M.P. Harrigan, C. Klein, J.M. Swails, C.X. Hernández, C.R. Schwantes, L.P. Wang, T.J. Lane, 
V.S. Pande, MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories, Biophys J. 109 (2015) 1528–
1532. https://doi.org/10.1016/j.bpj.2015.08.015. 

32. B.J. Grant, A.P.C. Rodrigues, K.M. ElSawy, J.A. McCammon, L.S.D. Caves, Bio3d: An R package for the comparative analysis 
of protein structures, Bioinformatics. 22 (2006) 2695–2696. https://doi.org/10.1093/bioinformatics/btl461. 

33. J. Dong, N.-N. Wang, Z.-J. Yao, L. Zhang, Y. Cheng, D. Ouyang, A.-P. Lu, D.-S. Cao, ADMETlab: a platform for systematic 
ADMET evaluation based on a comprehensively collected ADMET database, J Cheminform. 10 (2018) 29. 
https://doi.org/10.1186/s13321-018-0283-x. 

34. X. Gao, B. Qin, P. Chen, K. Zhu, P. Hou, J.A. Wojdyla, M. Wang, S. Cui, Crystal structure of SARS-CoV-2 papain-like protease, 
Acta Pharm Sin B. (2020). https://doi.org/10.1016/j.apsb.2020.08.014. 

35. P. Ertl, A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and 
fragment contributions, J Cheminform. 1 (2009) 1–11. https://doi.org/10.1186/1758-2946-1-8. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or product. 

https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1093/bib/bbz141
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/ct050212s
https://doi.org/10.1063/1.1808117
https://doi.org/10.1063/1.445869
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1093/bioinformatics/btl461
https://doi.org/10.1186/s13321-018-0283-x
https://doi.org/10.1016/j.apsb.2020.08.014
https://doi.org/10.1186/1758-2946-1-8

	1. Introduction
	2. Computational Details
	2.1. Target Preparation
	2.2. De novo Drug Design
	2.3. Molecular Dynamics
	2.4. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Study
	2.5. Organic Retrosynthesis

	3. Results and Discussion
	3.1. Structure of Papain-like Protease
	3.2. De novo Drug Design
	3.3. Molecular Dynamics Analysis
	3.4. Organic Retrosynthesis

	4. Conclusions
	References

