
Citation: Nazir, I.; Wani, I.A.; Mir,

M.I. Generalization and Sharpening

of Some Inequalities for Polynomials.

Comput. Sci. Math. Forum 2023, 1, 0.

https://doi.org/

Academic Editor: Firstname

Lastname

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Generalization and Sharpening of Some Inequalities
for Polynomials †

Ishfaq Nazir *, Irfan Ahmad Wani and Mohammad Ibrahim Mir

Department of Mathematics, University of Kashmir, South Campus,
Anantnag 192101, Jammu and Kashmir, India; email1@email.com (I.A.W.); ibrahimmath80@gmail.com (M.I.M.)
* Correspondence: ishfaqnazir02@gmail.com
† This paper is an extended version of our paper published in Presented at the 1st International Online

Conference on Mathematics and Applications; Available online: https://iocma2023.sciforum.net/.

Abstract: This paper’s objective is to develop some findings for the polar derivative of a polynomial
in the plane that are motivated by a classical result of Turán that connects the sup-norm of the
derivative on the unit circle to that of the polynomial itself under some conditions. The obtained
results strengthen and broaden certain existing estimates that relate the sup-norm of the polar
derivative and the polynomial. In addition, a few numerical examples are provided to demonstrate
how, in some cases, the bounds produced by our findings may be far sharper than those previously
discovered in the extensive literature on this topic.
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1. Introduction

A classical analytic subject is the study of extremal problems of functions and the
conclusions where certain techniques to obtaining polynomial inequalities for various
norms and with varied constraints on utilising different methods of the geometric function
theory. The literature for proving the inverse theorems in approximation theory heavily
relies on the Erdós-Lax and Turán-type inequalities connecting the norm of the derivative
and the polynomial itself as well as generalising the classical polynomial inequalities.
Of course, these inequalities also have their own intrinsic interest. As evidenced by
numerous recent studies, these inequalities for constrained polynomials have been the
focus of numerous research works (for example, see [4–6,8–10]).

According to well known inequality of Bernstein [2] on the derivative of a polynomial
P(z) of degree n, we have

max
|z|=1
|P′(z)| ≤ n max

|z|=1
|P(z)|. (1)

The result is best possible and equality holds for a polynomial having all its zeros at the
origin.

Erdös conjectured and later Lax [7] proved that if p(z) is a polynomial of degree n
having no zeros in |z| < 1, then

max
|z|=1
|P′(z)| ≤ n

2
max
|z|=1
|P(z)| (2)
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The inequality (2) is best possible and equality holds for P(z) = a + bzn, where
|a| = |b|. As an extension of (2), Malik [10] proved that if P(z) 6= 0 in |z| < k, k ≥ 1, then

max
|z|=1
|P′(z)| ≤ n

1 + k
max
|z|=1
|P(z)| (3)

For the class of polynomials not vanishing in |z| < k, k ≤ 1, the precise estimate of
maximum |P′(z)| on |z| = 1 is not easily obtainable. For quite some time it was believed
that if P(z) 6= 0 in |z| < k, k ≤ 1, then the inequality analogous to (3) should be

max
|z|=1
|P′(z)| ≤ n

1 + kn max
|z|=1
|P(z)| (4)

till Professor Saff gave the example P(z) =
(

z− 1
2

)(
z + 1

3

)
to counter this belief. In 1980,

it was shown by Govil [4] that (4) holds with an additional hypothesis and proved the
following result.

Theorem 1. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < k, k ≤ 1

and Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max
|z|=1
|P′(z)| ≤ n

1 + kn max
|z|=1
|P(z)| (5)

The result is best possible and equality holds in (5) for P(z) = zn + kn.

Singh and Chanam [14] have proved the following refinement of inequality (5) by
using the Dubinin lemma [2].

Theorem 2. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < k, k ≤ 1

and Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max
|z|=1
|P′(z)| ≤ 1

1 + kn

(
n− (

√
|c0| − kn/2

√
|cn|)kn√

|c0|

)
max
|z|=1
|P(z)| (6)

The result is best possible and equality holds in (6) for P(z) = zn + kn.

On the other hand, P. Turán [12] proved in 1939 that if a polynomial P(z) of degree n
has all of its zeros in |z| ≤ 1, then it has a lower bound estimate of the derivative to the size
of the polynomial.

max
|z|=1
|P′(z)| ≥ n

2
max
|z|=1
|P(z)| (7)

Also using lemma of Dubinin [3], Singh and Chanam [14] have proved the following
refinement of Turán’s inequality.

Theorem 3. If P(z) = ∑n
ν=0 cνzν is a polynomial of degree n which has all its zeros in the disk

|z| ≤ k, k ≥ 1, then

max
|z|=1
|P′(z)| ≥ 1

1 + kn

(
n +

kn/2
√
|cn| −

√
|c0|

kn/2
√
|cn|

)
max
|z|=1
|P(z)| (8)

The result is best possible and equality holds in (8) for P(z) = zn + kn.

Recently Authors [11] have obtained following refinement of Theorem 2.
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Theorem 4. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < k, k ≤ 1

and Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then
for 0 ≤ t ≤ 1, we have

max
|z|=1
|P′(z)| ≤

[
n− kn

1 + kn

(
n +

√
|c0| − kn/2

√
|cn|+ tm√

|c0|

)]
max
|z|=1
|P(z)|

− kn

1 + kn

(
n +

√
|c0| − kn/2

√
|cn|+ tm√

|c0|

)
tm (9)

where m = min|z|=1/k |Q(z)|. Equality holds in (9) for P(z) = zn + kn.

In the same paper, Authors [11] have also obtained following refinement of Theorem 3.

Theorem 5. If P(z) = ∑n
ν=0 cνzν is a polynomial of degree n which has all its zeros in the disk

|z| ≤ k, k ≥ 1, then for 0 ≤ t ≤ 1, we have

max
|z|=1
|P′(z)| ≥ 1

1 + kn

(
n +

kn/2
√
|cn| −

√
|c0|+ tm

kn/2
√
|cn|

)(
max
|z|=1
|P(z)|+ tm

)
(10)

where m = min|z|=k |P(z)|. Equality holds in (2.1) for P(z) = zn + kn.

Different versions of these Bernstein and Turán-type inequalities have appeared in the
literature in more generalized forms in which the underlying polynomial is replaced by
more general classes of functions. The one such generalization is moving from the domain
of ordinary derivative of polynomials to their polar derivative which is defined as

Definition: Let p(z) be a polynomial of degree n with complex coefficients and α ∈ C
be a complex number, then the polynomial

Dα p(z) = np(z) + (α− z)p′(z)

is called polar derivative of p(z) with pole α. Note that Dα p(z) is a polynomial of degree
n− 1 and it is a generalisation of the ordinary derivative in the sense that

lim
α→∞

Dα p(z)
α

= p′(z)

uniformly with respect to z for |z| ≤ R, R > 0.
Many of the generalizations of above mentioned inequalities involve the comparison of

the polar derivative DαP(z) with various choices of p(z), α and other parameters. For more
information on the polar derivative of polynomials one can consult the comprehensive
books of Marden [8], Milovanonic et al. [9] or Rahman and Schmeisser [13]. In 1998,
Aziz and Rather [1] extended inequality () to polar derivative by proving that if P(z) is a
polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex
number α with |α| ≥ k,

max
|z|=1
|DαP(z)| ≥ n

(
|α| − k
1 + kn

)
max
|z|=1
|P(z)| (11)

Govil and Mctume [6] established the polar derivative extension of inequality (11) and
proved

max
|z|=1
|DαP(z)| ≥ n

(
|α| − k
1 + kn

)
max
|z|=1
|P(z)|+ n

(
|α| − (1 + k + kn)

1 + kn

)
min
|z|=k
|P(z)| (12)

for any complex number α with |α| ≥ 1 + k + kn.
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Also, using Dubinin lemma [3], Singh and Chanam [14] have proved the following
improvement of inequality (11) due to Aziz and Rather [1].

Theorem 6. If P(z) = ∑n
ν=0 aνzν is a polynomial of degree n which has all its zeros in the disk

|z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k, we have

max
|z|=1
|DαP(z)| ≥ (|α| − k)

(1 + kn)

(
n +

kn/2
√
|cn| −

√
|c0|

kn/2
√
|cn|

)
max
|z|=1
|P(z)| (13)

As a polar derivative generalization of Theorem 1, Mir and D. Breaz [12] obtained
following result.

Theorem 7. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < k, k ≤ 1

and Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max
|z|=1
|DαP(z)| ≤ n

(
|α|+ kn

1 + kn

)
max
|z|=1
|P(z)| (14)

The result is best possible and equality holds in (5) for P(z) = zn + kn.

2. Main Results

We begin, by presenting the following generalization and refinement of inequality (1),
(2) and Theorem 6.

Theorem 8. If P(z) = ∑n
ν=0 cνzν is a polynomial of degree n which has all its zeros in the disk

|z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ 1 + k + kn, and 0 ≤ t ≤ 1, we have

max
|z|=1
|DαP(z)| ≥ (|α| − k)

(1 + kn)

(
n +

kn/2
√
|cn| −

√
|c0|+ tm

kn/2
√
|cn|

)
max
|z|=1
|P(z)|

+ t

(
n(|α| − (1 + k + kn))

(1 + kn)
+

(|α| − k)
(1 + kn)

(kn/2
√
|cn| −

√
|c0|+ tm)

kn/2
√
|cn|

)
m (15)

where m = min|z|=k |P(z)|.

Remark 1. Since P(z) = ∑n
ν=0 cνzν has all its zeros in the disk |z| ≤ k, k ≥ 1 and if z1, z2, . . . , zn

are the zeros of P(z), then ∣∣∣∣ c0

cn

∣∣∣∣ = |z1z2 . . . zn| = |z1||z2| . . . |zn| ≤ kn

As we see in the proof of Theorem 8 (given in next section), for every β with |β| ≤ 1, the polynomial
P(z) + βm has all its zeros in the disk |z| ≤ k, k ≥ 1, hence∣∣∣∣ c0 + βm

cn

∣∣∣∣ ≤ kn (16)

which is equivalent to

kn/2
√
|cn| ≥

√
|c0 + βm|

If in (16), we choose the argument of β suitably, we get√
|c0|+ |β|m ≤ kn/2

√
|cn|. (17)
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If we take |β| = t in (17), so that 0 ≤ t ≤ 1, we get
√
|c0|+ tm ≤ kn/2

√
|cn|.

Remark 2. For t = 0, Theorem 8 reduces to Theorem 6.

Remark 3. If we divide (15) by |α| and take |α| → ∞, we get Theorem 5 and thus Theorem 8
contains Theorem 5.

Remark 4. If we divide (15) by |α| and take |α| → ∞ and t = 0 we get Theorem 3 and thus
Theorem 8 also contains Theorem 3.

Theorem 8 in general provides much better information regarding max|z|=1 |DαP(z)|,
in case when P(z) has all its zeros in |z| < k, k ≥ 1. We illustrate this with the help of
following example.

Example 1. Consider P(z) = z2 + 3z + 5/4, which is polynomial of degree 2 having all its zeros
in |z| ≤ 5/2. We take k = 3 and α = 15 + 8i, so that |α| = 17, then clearly |α| ≥ 1 + k + kn. We
find that

min
|z|=3
|P(z)| = 5/4 and max

|z|=1
|P(z)| = 21/4

For this polynomial, we obtain that

max
|z|=1
|DαP(z)| ≥ 14.70 (by inequality (1.1))

max
|z|=1
|DαP(z)| ≥ 18.20 (by inequality (1.12))

max
|z|=1
|DαP(z)| ≥ 19.55 (by Theorem 1.6)

While Theorem 8 (with t = 1), gives

max
|z|=1
|DαP(z)| ≥ 20.25

which is much better than the bound given by above estimates.

Using Theorem 8, we prove the following generalisation and refinement of Theorem 4
and Theorem 7.

Theorem 9. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < k, k ≤ 1

and Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then
for 0 ≤ t ≤ 1, we have

max
|z|=1
|DαP(z)| ≤

[
n|α| − (|α| − 1)kn

(1 + kn)

(
n +

kn/2
√
|c0| −

√
|cn|+ tm√

|c0|

)]
max
|z|=1
|P(z)|

− (|α| − 1)kn

(1 + kn)

(
n +

kn/2
√
|cn| −

√
|c0|+ tm√

|c0|

)
tm (18)

where m = min|z|=1/k |Q(z)|. Equality holds in (18) for P(z) = zn + kn.

Remark 5. If we divide (18) by |α| and take |α| → ∞, we get Theorem 4 and thus Theorem 9
contains Theorem 4.
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Taking t = 0 in Theorem 9, we get the following polar derivative generalization of
Theorem 7.

Corollary 1. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < k, k ≤ 1

and Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then
for 0 ≤ t ≤ 1, we have

max
|z|=1
|DαP(z)| ≤

[
n|α| − (|α| − 1)kn

(1 + kn)

(
n +

kn/2
√
|c0| −

√
|cn|√

|c0|

)]
max
|z|=1
|P(z)| (19)

where m = min|z|=1/k |Q(z)|. Equality holds in (18) for P(z) = zn + kn.

Remark 6. If we divide (18) by |α| and take |α| → ∞ and t = 0 we get Theorem 2.

Remark 7. If we divide (18) by |α| and take |α| → ∞, t = 0 and k = 1 we get the following
improvement of inequality (2) due to Erdös and Lax for a subclass of polynomials having all its zeros
in |z| ≥ 1.

Corollary 2. Let P(z) = ∑n
ν=0 cνzν be a polynomial of degree n having no zero in |z| < 1 and

Q(z) = znP(1/z). If |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max
|z|=1
|P′(z)| ≤ 1

2

(
n−

√
|c0| −

√
|cn|√

|c0|

)
max
|z|=1
|P(z)| (20)

In the same way, Theorem 9 in general provides much better information than Theorem
regarding the maximum of |DαP(z)| on |z| = 1. We illustrate this with the help of following
example

Example 2. Consider P(z) = z3 − z2 + z− 1, which is polynomial of degree 3. Clearly, P(z) has
all its zeros in |z| ≤ 1. Further

Q(z) = znP
(

1
z

)
= −P(z).

So that |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1. We take
k = 1

2 , so that P(z) 6= 0 in |z| < k = 1
2 and we find numerically that max|z|=1 |P(z)| = 4,

min|z|= 1
1/2
|Q(z)| = min|z|=2 |Q(z)| = 5. Taking α = 3+i

√
7

2 , so that |α| = 2, we obtain the

following estimates

max
|z|=1
|DαP(z)| ≤ 22.66 (by (14))

While Theorem 9 gives

max
|z|=1
|DαP(z)| ≤ 20.85

which is much better than the bound given by (14).

For the proof our results, we need the following lemma due to Govil and Rahman [4].

Lemma 1. If P(z) is a polynomial of degree n then on |z| = 1,

|P′(z)|+ |Q′(z)| ≤ n max
|z|=1
|P(z)|,
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where Q(z) = znP(1/z).

3. Proofs of Theorems

Proof of Theorem 8. If P(z) = ∑n
ν=0 cνzν has a zero on |z| = k, then m = min|z|=k |P(z)| =

0 and the result follows from Theorem 3 in this case. Henceforth, we suppose that P(z) has
all its zeros in |z| < k, k ≥ 1.

Let H(z) = P(kz) and G(z) = zn H(1/z) = znP(k/z), then all the zeros of G(z) lie in
|z| > 1 and |H(z)| = |G(z)| for |z| = 1. This gives∣∣∣∣∣znP

(
k
z

)∣∣∣∣∣ = |P(kz)| ≥ m f or |z| = 1

It follows by Minimum Modulus principle, that∣∣∣∣∣znP
(

k
z

)∣∣∣∣∣ ≥ m f or |z| ≤ 1

Replacing z by 1/z, it implies that

|P(kz)| ≥ m|z|n f or |z| ≥ 1

or

|P(z)| ≥ m
∣∣∣ z
k

∣∣∣n f or |z| ≥ k (21)

Now, consider the polynomial

F(z) = P(z) + βm

where β is complex number with |β| ≤ 1, then all the zeros of F(z) lie in |z| ≤ k. Because, if
for some z = z1, with |z1| > k, we have

F(z1) = P(z1) + βm = 0

then

|P(z1)| = |βm| ≤ m < m
∣∣∣ z1

k

∣∣∣n
which contradicts (21). Hence, for every complex number β with |β| ≤ 1, the polynomial

F(z) = P(z) + βm = (c0 + βm) +
n

∑
ν=1

cνzν

has all its zeros in |z| ≤ k, where k ≥ 1. Applying Theorem 6, to the polynomial F(z), we
get for every complex number β with |β| ≤ 1 and |z| = 1

max
|z|=1
|Dα(P(z) + βm)| ≥ |α| − k

1 + kn

(
n +

kn/2
√
|cn| −

√
|c0 + βm|

kn/2
√
|cn|

)(
max
|z|=1
|P(z) + βm|

)
(22)

For every β ∈ C, we have

|c0 + βm| ≤ |c0|+ |β|m,
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Since the function k(x) = n +
kn/2
√
|cn |−

√
x

kn/2
√
|cn |

is decreasing for k ≥ 1, it follows from (22) that

for every β with |β| ≤ 1 and |z| = 1

max
|z|=1
|Dα(P(z) + βm)| ≥ |α| − k

1 + kn

(
n +

kn/2
√
|cn| −

√
|c0|+ |β|m

kn/2
√
|cn|

)(
max
|z|=1
|P(z) + βm|

)
(23)

Choosing argument of β on R.H.S of (23) such that

max
|z|=1
|P(z) + βm| = max

|z|=1
|P(z)|+ |β|m,

we obtain from (23) that

max
|z|=1
|DαP(z)|+ |β|mn ≥ |α| − k

1 + kn

(
n +

kn/2
√
|cn| −

√
|c0|+ |β|m

kn/2
√
|cn|

)(
max
|z|=1
|P(z)|+ |β|m

)
(24)

which on taking |β| = t, so that 0 ≤ t ≤ 1 gives

max
|z|=1
|DαP(z)| ≥ (|α| − k)

(1 + kn)

(
n +

kn/2
√
|cn| −

√
|c0|+ tm

kn/2
√
|cn|

)
max
|z|=1
|P(z)|

+ t

(
n(|α| − (1 + k + kn))

(1 + kn)
+

(|α| − k)
(1 + kn)

(kn/2
√
|cn| −

√
|c0|+ tm)

kn/2
√
|cn|

)
m (25)

This completes the proof of the Theorem 8.

Proof of Theorem 9. Note that for any complex number α with |α| ≥ 1, we have on |z| = 1

|DαP(z)| = |nP(z) + (α− z)P′(z)|
= |nP(z)− zP′(z) + αP′(z)|
≤ |nP(z)− zP′(z)|+ |α||P′(z)|
= |Q′(z)|+ |α||P′(z)|
= n max

|z|=1
|P(z)| − |P′(z)|+ |α||P′(z)| (by Lemma1)

= n max
|z|=1
|P(z)|+ (|α| − 1)|P′(z)|

Therefore using Theorem 4, we have

max
|z|=1
|DαP(z)| ≤ n max

|z|=1
|P(z)|+ (|α| − 1)

[
n− kn

(1 + kn)

(
n +

√
|c0| − kn/2

√
|cn|+ tm√

|c0|

)]
max
|z|=1
|P(z)|

− (|α| − 1)kn

(1 + kn)

(
n +

√
|c0| − kn/2

√
|cn|+ tm√

|c0|

)
tm
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That is

max
|z|=1
|DαP(z)| ≤

[
n|α| − (|α| − 1)kn

(1 + kn)

(
n +

√
|c0| − kn/2

√
|cn|+ tm√

|c0|

)]
max
|z|=1
|P(z)|

− (|α| − 1)kn

(1 + kn)

(
n +

√
|c0| − kn/2

√
|cn|+ tm√

|c0|

)
tm (26)
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