Proceeding Paper

# Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures ${ }^{\dagger}$ 

Baghdad Said ${ }^{1,2}$

Citation: Said, B. Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures. Comput. Sci. Math. Forum 2023, 1, 0.
https://doi.org/
Academic Editor: Firstname Lastname

Published: 28 April 2023


Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1 Department of Mathematics, Ibn khaldoun University, Tiaret, Algeria; said.baghdad@univ-tiaret.dz
2 Laboratory of Geometry, Analysis, Control and Applications, University of Saida Dr. Moulay Tahar, , Algeria
$\dagger$ Presented at the 1st International Online Conference on Mathematics and Applications; Available online: https:/ /iocma2023.sciforum.net/.


#### Abstract

In this paper, we use the concept of measure of nocompactness and fixed point theorems to investigate the existence and stability of solutions of a class of Hadamard-Stieltjes fractional differential inclusion in an appropriate Banach space, these results are proven under sufficient hypotheses. We also give an example to illustrate the obtained results.


Keywords: fractional differential inclusions; nocompactness measures; regulated functions; stability; fixed-point theorems

## 1. Introduction

In this work, we consider the following differential inclusion with initial condition

$$
\left\{\begin{array}{l}
\mathcal{D}^{\gamma}\left(\frac{d w}{d \phi}\right)(z) \in G(z, w(z)) ; \quad z \in(1,+\infty)  \tag{1}\\
\frac{d w}{d \phi}(1)=w_{0} ; \quad w(1)=w_{1}
\end{array}\right.
$$

where $w_{0}, w_{1} \in \mathbb{R}, \frac{d w}{d \phi}$ is the Stieltjes derivative of $w$ with respect to $\phi, \mathcal{D}^{\gamma}$ is the Hadamard fractional derivative of order $0<\gamma<1, G:[1,+\infty) \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is multivalued map and $\mathcal{P}(\mathbb{R})$ is the family of all nonempty subsets of $\mathbb{R}$.

## 2. Preliminaries

Assume that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is monotone, nondecreasing and continuous from the left everywhere. $D_{\phi}$ is the set of discontinuity points of $\phi$. We denote by $\mathcal{B}(J)$, the Banach space of bounded functions on the interval $J=[1,+\infty)$ equipped with the norm of uniform convergence, and by $\mathcal{B}_{\phi}(J)$ the subspace of bounded functions which are also $\phi$-continuous on $J$.

Theorem 1. $\mathcal{B}_{\phi}(J)$ is a Banach space.
Let $X$ and $Y$ be two Banach spaces, we define

$$
\mathcal{P}_{c l, c v, c p}(X)=\{\Omega \in \mathcal{P}(X) ; \Omega \text { is closed,convex,compact }\} .
$$

Theorem 2 ([10]). Let $G: X \rightarrow \mathcal{P}_{c l, c v}(Y)$ be a lower semicontinuous multifunction. Then $G$ admits continuous selection.

Theorem 3 ([10]). Let $\Omega$ be a nonempty, bounded, closed and convex subset of the Banach space $X$ with $\psi$ is a measure of nocompactness in it and let $G: \Omega \longrightarrow \mathcal{P}_{c l, c v}(\Omega)$ be a closed. Assume that there exists a constant $k \in[0,1)$ such that $\psi(G A) \leq k \psi(A)$ for any nonempty subset $A$ of $\Omega$. Then $G$ has a fixed point in the set $\Omega$.

Remark 1. Let us denote by Fix $G$ the set of all fixed points of the operator $G$ which belong to $\Omega$. The set Fix $G$ belongs to the family ker $\psi$ see [10].

## 3. Main Results

Consider the function $\psi$ defined on the family $\mathcal{M}_{\mathcal{B}_{\phi}(J)}$ by the formula

$$
\begin{equation*}
\psi(\Omega)=\max \left\{\omega_{\phi}(\Omega), \omega_{\phi}^{+}(\Omega)\right\}+\underset{z \rightarrow \infty}{\lim \sup } \operatorname{diam} \Omega(z) \tag{2}
\end{equation*}
$$

Theorem 4. The mappings $\psi$ is a measure of nocompactness in the space $\mathcal{B}_{\phi}(J)$.
Consider the following inclusion

$$
\begin{equation*}
u(z) \in(F u)(z) ; z \in J . \tag{3}
\end{equation*}
$$

Definition 1. The solution $u=u(z)$ of (3) is said to be globally attractive if for each solution $v=v(z)$ of (3) we have that

$$
\lim _{z \rightarrow \infty}(u(z)-v(z))=0
$$

In the case when this limit is uniform i.e when for each $\epsilon>0$ there exists $T>1$ such that

$$
\begin{equation*}
|u(z)-v(z)|<\epsilon, \tag{4}
\end{equation*}
$$

for $z \geq T$, we will say that solutions of (3) are uniformly globally attractive.
Remark 2. The kernel ker $\psi$ consists of nonempty and bounded sets $\Omega$ such that functions from $\Omega$ are locally equiregulated on $J$ and for each $u, v \in \Omega$, (4) hold.

Let $\frac{d w}{d \phi}(z)=v(z)$ then $w(z)=w_{0}+\int_{1}^{z} v(t) d \phi(t)$ and (1) can be written as

$$
\begin{equation*}
v(z) \in w_{1}+\frac{1}{\Gamma(r)} \int_{1}^{z}\left(\ln \frac{z}{t}\right)^{\gamma-1} G\left(t, w_{0}+\int_{1}^{t} v(\tau) d \phi(\tau)\right) \frac{d t}{t} \tag{5}
\end{equation*}
$$

Denote $|G(z, u)|=\{|u| ; u \in F(z, u)\}$ and $\|G(z, u)\|=H(G(z, u), 0)=\sup \{|u| ; u \in$ $G(z, u)\}$. The differential inclusion (1) will be considered under the following assumptions:
$\left(H_{1}\right)$ There exist continuous and bounded functions $p, q: J \rightarrow \mathbb{R}_{+}$such that

$$
H(G(z, u), G(z, v)) \leq p(z)|u-v| ; z \in J
$$

for all $u, v \in \mathbb{R}$, and

$$
\|G(z, 0)\|=H(G(z, 0), 0) \leq q(z) ; z \in J .
$$

$\left(H_{2}\right)$ For every $(z, w)$ in $J \times \mathbb{R}, G(z, w)$ is a nonempty convex and closed subset of $\mathbb{R}$.
$\left(H_{3}\right)$ Assume that

$$
\begin{gathered}
p^{*}=\sup _{z \in J}\left|\frac{w_{0}}{\Gamma(\gamma)} \int_{1}^{z}\left(\ln \frac{z}{t}\right)^{\gamma-1} p(t) d t\right|<\infty, \\
q^{*}=\sup _{z \in J}\left|\frac{1}{\Gamma(\gamma)} \int_{1}^{z}\left(\ln \frac{z}{t}\right)^{\gamma-1} q(t) d t\right|<\infty, \\
p_{\phi}=\sup _{z \in J}\left|\frac{1}{\Gamma(\gamma)} \int_{1}^{z}\left(\ln \frac{z}{t}\right)^{\gamma-1} p(t)[\phi(t)-\phi(1)] d t\right|<1,
\end{gathered}
$$

Remark 3. As observed there, $G$ is lower semicontinuous, hence $G$ admits continuous selection (Theorem 2).

Theorem 5. Under assumptions $\left(H_{1}\right)-\left(H_{3}\right)$ The differential inclusion (1) has at least one solution $u=u(z)$ in the space $\mathcal{B}_{\phi}(J)$. Moreover, solutions of the differential inclusion (1) are globally attractive.

Proof. Consider the multi-valued operator $N$ defined on the space $\mathcal{B}_{\phi}(J)$ in the following way:

$$
N: \mathcal{B}_{\phi}(J) \rightarrow \mathcal{P}\left(\mathcal{B}_{\phi}(J)\right) ;
$$

such that, for each $u \in \mathcal{B}_{\phi}(J)$

$$
(N w)(z)=\left\{u \in \mathcal{B}_{\phi}(J) \left\lvert\, u(z)=w_{1}+\frac{1}{\Gamma(r)} \int_{1}^{z}\left(\ln \frac{z}{t}\right)^{\gamma-1} g\left(t, w_{0}+\int_{1}^{t} w(\tau) d \phi(\tau)\right) \frac{d t}{t}\right.\right\}
$$

where $g$ is a selctor of $G$. For each $w$ in $\mathcal{B}_{\phi}(J)$, and for each function $u$ in $N w$, we have $u$ is $\phi$-continuous on $J$. Next, let us take an arbitrary function $w \in \mathcal{B}_{\phi}(J), u \in N u$ and fixed $z \in J$, we get

$$
|u(z)| \leq\left|w_{1}\right|+p^{*}+\|w\| p_{\phi}+q^{*}
$$

So, the operator $N$ is well defined. We take

$$
\zeta=\frac{\left|w_{1}\right|+\frac{p^{*}}{\Gamma(\gamma)}+\frac{q^{*}}{\Gamma(\gamma)}}{1-p_{\phi}}
$$

We deduce that the operator $N: B_{\zeta} \longrightarrow \mathcal{P}\left(B_{\zeta}\right)$. Further, the set $N u$ is closed and convex in $B_{\zeta}$. Now, we take a nonempty $\Omega \subset B_{\zeta}$, for $T>1, z_{1}, z_{2} \in[1, T]$ with $z_{1}<z_{2}$ and $\left|\phi\left(z_{2}\right)-\phi\left(z_{1}\right)\right| \leq \epsilon$ for each $\epsilon>0$. Fix arbitrarily $w \in \Omega$ and $u \in N w$, we obtain

$$
\begin{equation*}
\omega_{\phi}(N \Omega)=0 \tag{6}
\end{equation*}
$$

For $z_{0} \in J \cap D_{\phi}$, fix $z \in\left(z_{0}, z_{0}+\epsilon\right)$, we have

$$
\begin{equation*}
\omega_{\phi}^{+}(N \Omega)=0 \tag{7}
\end{equation*}
$$

From (6) and (7), we infer that the set $N \Omega$ is equiregulated on $J$. Further, for $w, w^{\prime} \in \Omega$, $u \in N w$ and $u^{\prime} \in N w^{\prime}$ and an arbitrary fixed $z \in[1, T]$, we get

$$
\begin{equation*}
\limsup _{z \rightarrow \infty} \operatorname{diam} N \Omega(z) \leq p_{\phi} \limsup _{z \rightarrow \infty} \operatorname{diam} \Omega(z) \tag{8}
\end{equation*}
$$

Consequently, in view of (6)-(8), we deduce that

$$
\psi(N \Omega) \leq p_{\phi} \psi(\Omega)
$$

Then, by the Theorem 3 the operator $N$ has at least one fixed point in $B_{\zeta}$ which is a solution of differential inclusion (1). Moreover, taking into account the fact that the set Fix $N \in \operatorname{ker} \psi$ (Remark 1) and the characterization of sets belonging to ker $\psi$ (Remark 2), we conclude that all solutions of (1) are globally attractive in the sense of Definition 1.

## 4. Example

We consider the following differential inclusion

$$
\left\{\begin{array}{l}
\mathcal{D}^{\gamma}\left(\frac{d w}{d \phi}\right)(z) \in\left[\frac{e^{-z}}{|u(z)|+z}, \frac{(z-1) e^{-z}}{|u(z)|+z}\right] \subset \mathbb{R} ; z>1  \tag{9}\\
\frac{d w}{d \phi}(1)=w_{0} ; \quad w(1)=w_{1} .
\end{array}\right.
$$

It is clear that (9) can be written as the differential inclusion (1), where $\phi(\tau)=$ $\arctan ([\tau])$ (the symbol $[\tau]$ indicates the integer value of $\tau$ ). Let us show that conditions $\left(H_{1}\right)-\left(H_{3}\right)$ hold. For $z \in J$ and $u, v \in \mathbb{R}$, we have

$$
\begin{gathered}
H(F(z, u), F(z, v)) \leq(z-1) e^{-z}|u-v| . \\
\text { So } p(z)=(z-1) e^{-z}, F(z, 0)=\left[\inf \left\{\frac{e^{-z}}{z}, \frac{(z-1)}{z} e^{-z}\right\}, \max \left\{\frac{e^{-z}}{z}, \frac{(z-1)}{z} e^{-z}\right\}\right] \text {, hence } \\
\|F(z, 0)\|=\max \left\{\frac{e^{-z}}{z}, \frac{(z-1)}{z} e^{-z}\right\}=q(z) .
\end{gathered}
$$

Notice that the functions $p, q$ are continuous and bounded on $J$. Next, for a fixed $z \in J$, we have $p^{*}<1$. This estimate show that $p^{*}$ and $q^{*}$ are finite quantities. Consequently from Theorem 5 the differential inclusion (9) has at least solution in the space $\mathcal{B}_{\phi}(J)$ and solutions of (9) are globally attractive.

## Funding:

Institutional Review Board Statement:
Informed Consent Statement:
Data Availability Statement:
Conflicts of Interest:

## References

1. Abbas, S.A.Ï.D.; Benchohra, M.O.U.F.F.A.K.; Henderson, J.O.H.N.N.Y. Ulam stability for partial fractional integral inclusions via Picard operators. J. Frac. Calc. Appl. 2014, 5, 133-144.
2. Appell, J.; Pascale, E.D.; Thai, N.H.; Zabreiko, P.P. Multi-Valued Superpositions; Instytut Matematyczny Polskiej Akademi Nauk: Warszawa, Poland, 1995.
3. Aubin, J.P.; Cellina, A. Differential Inclusions Set-Valued Maps and Viability Theory; Springer: Berlin/Heidelberg, Germany, 1984.
4. Bressan, A. On the qualitative theory of lower semicontinuous differential inclusions. J. Differ. Equ. 1989, 77, 379-391.
5. Cichoń, M.; Cichoń, K.; Satco, B. Measure differential inclusions through selection principles in the space of regulated functions. Mediterr. J. Math. 2018, 15, 148.
6. Couchouron, J.-F.; Precup, R. Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps. Electron. J. Differ. Equ. 2002, 2002, 1-21.
7. Dudek, S.; Olszowy, L. Measures of noncompactness and superposition operator in the space of regulated functions on an unbounded interval. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 168.
8. Frigon, M.; FAdrián, F.T. Stieltjes differential systems with nonmonotonic derivators. Bound. Value Probl. 2020, $2020,41$.
9. Frigon, M.; Pouso, R.L. Theory and applications of first-order systems of Stieltjes differential equations. Adv. Nonlinear Anal. 2017, 6, 13-36.
10. Kamenskii, M.; Obukhovskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2001.
11. López, P.R.; Márquez, A.I.; Rodríguez, L.J. Solvability of non-semicontinuous systems of Stieltjes differential inclusions and equations. Adv. Differ. Equ. 2020, $2020,227$.
12. Marraffa, V.; Satco, B. Stieltjes Differential Inclusions with Periodic Boundary Conditions without Upper Semicontinuity. Mathematics 2022, 10, 55.
13. Monteiro, G.A.; Satco, B. Extremal solutions for measure differential inclusions via Stieltjes derivatives. Adv. Differ. Equ. 2019, 2019, 239.
14. O'Regan, D.; Precup, R. Fixed point theorems for set-valued maps and existence principles for integral inclusions. J. Math. Anal. Appl. 2000, 245, 594-612.
15. Samko, S.; Kilbas, A.; Marichev, O.I. Fractional Integrals and Derivatives (Theorie and Applications); Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

