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Abstract: This work is devoted to the study of a class of fractional boundary value problems using 1

(left) Caputo derivative, and with the particularity of being resonant, i.e., the associated homogeneous 2

problem admits a nontrivial solution. Conditions to ensure the existence and uniqueness of solutions 3

are presented. Using Mawhin’s coincidence degree, it is shown that the problem under consideration 4

admits solutions and applying Banach contraction principle, sufficient conditions are obtained for 5

which the solution is unique. 6

Keywords: Fractional boundary value problem, Caputo derivative, Mawhin’s coincidence degree, 7

Banach contraction principle 8

1. Introduction 9

Although Fractional Calculus has its origins in 1695, with a letter between Leibniz and 10

L’Hôpital, it is only in the last decades that scientific interest in this area of mathematics has 11

become evident. This is largely due to its many applications in some fields of engineering, 12

biology, physics and mechanics (cf. [7,9,10]). 13

Obtaining analytical solutions in these type of problems is a very difficult issue. In 14

this sense, there is a need to study if the solutions exist or not and if so, to analyse if 15

there is uniqueness or not. Several methods are identified in the literature, from fixed 16

point theorems, integral inequalities, the coincidence degree of Mawhin, etc. (see e.g. 17

[1–4,6,8,12–15]). 18

Continuing the results presented in [11], in this paper, it is considered a class of 19

boundary value problem of fractional order with (left) Caputo fractional derivative 20{ CDα
a+x(t)− f (t, x(t), x′(t), x′′(t)) = 0, t ∈ [a, b],

x(a)− βx′(a) = 0, x′(a) = x′(b) = ϑ, x′′(a) = 0,
(1)

where β, ϑ ∈ R, 0 ≤ a < b, 2 < α < 3 and f : [a, b]×R3 → R is continuous. To obtain 21

sufficient conditions to ensure the existence of solutions, the coincidence degree due to 22

Mawhin is applied. The problem can be transformed into an equation of type Lx = Nx, 23

with L being a linear operator between Banach spaces and N being the nonlinear part. 24

Under that choice of boundary conditions, L is a not invertible (KerL ≥ 1), i.e., the problem 25

is resonant. A more detailed approach can be found in [11]. Once the existence of solutions 26

is guaranteed, we will proceed to the study of uniqueness. 27

2. Auxiliary Material and Methods 28

In this section, some essential definitions and methods are presented. 29

Definition 1. The (left) Riemann-Liouville fractional integral of order α ∈ R+ of a function x is
defined by

Iα
a+x(t) =

1
Γ(α)

∫ t

a
(t− s)α−1x(s)ds,
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admitting that the right-hand side is pointwise defined on (a, ∞), and with Γ being Euler Gamma 30

function (Γ(α) =
∫ ∞

0 tα−1e−tdt, α > 0). 31

Definition 2. The (left) Caputo fractional derivative of order α > 0 of a continuous function x is
defined by

CDα
a+x(t) =

1
Γ(n− α)

∫ t

a

x(n)(s)
(t− s)α−n+1 ds,

with the right-hand side being pointwise defined on (a, ∞), and n− 1 < α < n, n ∈ N. 32

Lemma 1. [7] Let n− 1 < α < n, n ∈ N. If x ∈ Cn−1([a, b]), then it holds: 33

(Iα
a+

CDα
a+x)(t) = x(t)−

n−1

∑
k=0

x(k)(a)
k!

(t− a)k. (2)

The following lemma is of great importance in Functional Analysis, and an essential 34

tool in the proof of uniqueness and solutions. 35

Theorem 1. (Banach contraction principle) Let (X, d) be a Banach space and let T : X → X be 36

a contraction operator on X. Then, T has a unique fixed point x ∈ X. 37

2.1. Mawhin’s coincidence theory 38

Let X and Y be two normed spaces. In order to present Mawhin’s coincidence theory, 39

let us recall an important concepts. 40

A linear operator L : domL ⊂ X → Y is said to be a Fredholm operator with Fredholm
index zero if ImL is a closed subset of Y and dim KerL = codimImL < ∞. If L is a Fredholm
and its Fredholm index is zero, then there exist continuous projectors P : X → X, Q : Y → Y
such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ.

Moreover, L|dom L∩ker P : dom L ∩ ker P→ Im L is an isomorphism. 41

Definition 3. Let Λ be an open bounded subset of X with domL∩Λ 6= ∅. It is said that mapping 42

N is L-compact on Λ if QN(Λ) is bounded and Kp(I −Q)N : Λ→ X is completely continuous. 43

We can present now the Mahwin’s Theorem, which allows us to study the existence of 44

solutions for the equation Lx = Nx. 45

Theorem 2. [8] Let Λ ⊂ X be open and bounded. Admit L i a Fredholm operator with Fredholm 46

index zero and N(Λ) is L-compact. Suppose that: 47

(i) Lx 6= λNx for every x ∈ ∂Λ ∩ (domL\KerL) and λ ∈ (0, 1); 48

(ii) Nx /∈ Im L for every x ∈ KerL ∩ ∂Λ; 49

(iii) deg(QN|KerL, Λ ∩KerL, 0) 6= 0, where Q : Y → Y is a projection such that ImL = KerQ. 50

Then the equation Lx = Nx has at least one solution in dom L ∩Λ. 51

In what follows, let X = C2([a, b]) with the habitual norm

‖x‖C2 = max
t∈[a,b]

{‖x‖∞ + ‖x′‖∞ + ‖x′′‖∞}

and Y = C([a, b]) with the norm ‖y‖C = ‖y‖∞, where ‖x‖∞ = maxt∈[a,b] |x(t)|. It is known 52

that X and Y, considered with such norms, are Banach spaces. 53
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3. Main Results 54

In what follows, it is applied the method presented in the last section is used. To that 55

purpose, consider the operator L : domL ⊂ C2([a, b])→ C([a, b]) defined by 56

(Lx)(t) = (CDα
a+x)(t), t ∈ [a, b], (3)

where

domL={x ∈ C2([a, b]) : (CDα
a+x)(t) ∈ Y, x(a)=βx′(a), x′(a)= x′(b) = ϑ, x′′(a)=0}.

Let N : C2([a, b])→ C([a, b]) be the operator 57

(Nx)(t) = f (t, x(t), x′(t), x′′(t)), t ∈ [a, b]. (4)

Thus, the fractional boundary value problem (1) can be rewritten in the form: 58

Lx = Nx, x ∈ domL, (5)

(cf. [11]). Note that applying L−1 = Iα
a to both members of equation (5), using boundary 59

conditions (presented in (1)) and applying Lemma 1, it yields that 60

x(t) = βϑ + ϑ(t− a) + Iα
a (Nx)(t). (6)

With some computations, it permit us to conclude that 61

KerL = {x ∈ C2([a, b]) : x(t) = ϑ(t− a + β), t ∈ [a, b]},

ImL =

{
y ∈ C([a, b]) :

∫ b

a
(b− s)α−2y(s)ds = 0

}
.

Moreover, it is proved in [11] that L is a Fredholm operator of index zero (cf. [11]), and the 62

linear continuous projectors P : C2([a, b])→ C2([a, b]) and Q : C([a, b])→ C([a, b]) can be 63

defined as 64

(Px)(t) = ϑ(t− a + β),

(Qy)(t) =
α− 1

(b− a)α−1

∫ b

a
(b− s)α−2y(s)ds, t ∈ [a, b].

In order to conclude that the problem under study admit solutions, assume the 65

following assertions: 66

(H1) There exist nonnegative constants p1, p2, p3 and q such that

| f (t, x, y, z)| ≤ p1|x(t)|+ p2|y(t)|+ p3|z(t)|+ q, t ∈ [a, b].

for any (x, y, z) ∈ R3, and so that η · p∗ < 1, with 67

η =
(b− a)α

Γ(α + 1)
+

(b− a)α−1

Γ(α)
+

(b− a)α−2

Γ(α− 1)
(7)

and p∗ = maxt∈[a,b]{p1, p2, p3}. 68

(H2) There exists a positive constant R such that for x ∈ domL, if |x′(t)| > R for all t ∈ [a, b],
then ∫ b

a
(b− s)α−2 f (s, x(s), x′(s), x′′(s))ds 6= 0.

(H3) There exists a constant R∗ > 0 such that for c1 ∈ R, if |c1| > R∗ for t ∈ [a, b], either

c1 f (t, c1(t− a + β), c1, 0) > 0, t ∈ [a, b],
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or
c1 f (t, c1(t− a + β), c1, 0) < 0, t ∈ [a, b].

Theorem 3. (cf. [11]) Let f : [a, b]×R3 → R be a continuous function, and suppose conditions 69

(H1), (H2) and (H3) are verified. Then the class of fractional boundary value problems (1) admits, 70

at least, one solution in C2([a, b]). 71

Proof. Under the hypothesis (H1)–(H3), it is proved that the sets 72

Λ1 = {x ∈ domL\KerL : Lx = λNx, λ ∈ (0, 1)}
Λ2 = {x ∈ KerL : Nx ∈ ImL}
Λ3 = {x ∈ KerL : ±λx + (1− λ)QNx = 0, λ ∈ [0, 1]}

are bounded (cf. [11, Lemmas 7, 8, 9, 10]). Therefore, consider Λ to be a bounded open 73

subset of C2([a, b]) such that
⋃3

i=1 Λi ⊂ Λ. We claim that N is L-compact on Λ (cf. [11, 74

Lemma 5]) and L is a Fredholm operator with index 0 (cf. [11, Lemma 4]). From the 75

boundedness of sets (8)–(8), it follows that: 76

(a) Lx 6= λNx for every x ∈ ∂Λ ∩ (domL\KerL) and λ ∈ (0, 1); 77

(b) Nx /∈ ImL for every x ∈ KerL ∩ ∂Λ; 78

(c) Let H(x, λ) = ±λx + (1− λ)QNx. We know that H(x, λ) 6= 0 for x ∈ KerL ∩ ∂Λ. 79

Thus, by homotopy property of degree, we get 80

deg(QN|KerL, Λ ∩KerL, 0) = deg(H(·, 0), KerL ∩ ∂Λ, 0)

= deg(H(·, 1), KerL ∩ ∂Λ, 0)

= deg(±I, KerL ∩ ∂Λ, 0) 6= 0,

(I represents the identity operator). 81

From (a), (b) and (c), according to Theorem 2, there exists, at least, one solution for the 82

equation Lx = Nx in domL ∩Λ, which ensure the existence of solutions for the problem 83

(1) in C2([a, b]), concluding the proof. 84

The next theorem establishes sufficient conditions for the uniqueness of solutions. 85

Theorem 4. Suppose that assertions (H1)–(H3) are verified and admit that there exist nonnegative 86

constants d1, d2 and d3 such that 87

| f (t, x, y, z)− f (t, x, y, z)| ≤ d1|x− x|+ d2|y− y|+ d3|z− z|, (8)

for every t ∈ [a, b], (x, y, z) ∈ R3, (x, y, z) ∈ R3. If 88

η · d∗ < 1 (9)

with η as defined in (7) and d∗ = max{d1, d2, d3}, then there exists a unique solution in C2([a.b]) 89

for the the class of boundary value problem (1) under study. 90

Proof. In order to prove the uniqueness of solution in C2([a, b]), according to (6), consider 91

the operator T : C2([a, b])→ C2([a, b]) defined by 92

(Tx)(t) = βϑ + ϑ(t− a) + Iα
a (Nx)(t)

= βϑ + ϑ(t− a) +
1

Γ(α)

∫ t

a
(t− s)α−1( f (s, x(s), x′(s), x′′(s))

)
ds. (10)
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Let BR = {x ∈ C2(R) : ‖x‖C2 ≤ R} and choose

R ≥ (|ϑ|+ b− a + 1)|ϑ|+ ηq
1− ηp∗

,

with p∗ = max{p1, p2, p3}. Note that, according to (H1), 1− ηp∗ > 1. For 2 < α < 3, the 93

operator T is continuous and twice differentiable. Moreover, taking into account condition 94

(H1), it follows that 95

|Tx(t)| ≤ |ϑ|(|β|+ t− a) +
1

Γ(α)

∫ t

a
(t− s)α−1| f (s, x(s), x′(s), x′′(s))|ds

≤ |ϑ|(|β|+ b− a) +
1

Γ(α)

∫ t

a
(t− s)α−1(p∗(|x(s)|+ |x′(s)|+ |x′′(s)|) + q

)
ds

≤ |ϑ|(|β|+ b− a) +
(b− a)α

Γ(α + 1)
q +

(b− a)α

Γ(α + 1)
p∗‖x‖C2 .

Additionally, (Tx)′(t) = ϑ + 1
Γ(α−1)

∫ t
a (t− s)α−2 f (s, x(s), x′(s), x′′(s))ds. Thus, 96

|(Tx)′(t)| ≤ |ϑ|+ 1
Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s), x′(s), x′′(s))|ds

≤ |ϑ|+ (b− a)α−1

Γ(α)
q +

(b− a)α−1

Γ(α)
p∗‖x‖C2 .

Finally, (Tx)′′(t) = 1
Γ(α−2)

∫ t
a (t− s)α−3 f (s, x(s), x′(s), x′′(s))ds, and 97

|(Tx)′′(t)| ≤ 1
Γ(α− 2)

∫ t

a
(t− s)α−3| f (s, x(s), x′(s), x′′(s))|ds

≤ (b− a)α−2

Γ(α− 1)
q +

(b− a)α−2

Γ(α− 1)
p∗‖x‖C2 .

Thus, we obtain that ‖Tx‖C2 ≤ (|β|+ b− a + 1)|ϑ|+ ηq + ηp∗R ≤ R, which shows that 98

T(BR) ⊂ BR. 99

Now, take x, y ∈ C2([a, b]). For any t ∈ [a, b], we have that 100

‖Tx− Ty‖C2 = max
t∈[a,b]

{‖Tx− Ty‖∞ + ‖Tx′ − Ty′‖∞ + ‖Tx′′ − Ty′′‖∞}.

where (Ty)(t) = βϑ + ϑ(t − a) + 1
Γ(α)

∫ t
a (t − s)α−1( f (s, y(s), y′(s), y′′(s)))ds, for any y ∈ 101

C2([a, b]). 102

Applying now (8), we obtain that 103

‖Tx − Ty‖ ≤ 1
Γ(α)

∫ t

a
(t− s)α−1| f (s, x(s), x′(s), x′′(s))− f (s, y(s), y′(s), y′′(s))|ds

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s), x′(s), x′′(s))− f (s, y(s), y′(s), y′′(s))|ds

+
1

Γ(α− 2)

∫ t

a
(t− s)α−3| f (s, x(s), x′(s), x′′(s))− f (s, y(s), y′(s), y′′(s))|ds

≤ 1
Γ(α)

∫ t

a
(t− s)α−1d∗

(
|x(s)− y(s)|+ |x′(s)− y′(s)|+ |x′′(s)− y′′(s)|

)
ds

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2d∗

(
|x(s)− y(s)|+ |x′(s)− y′(s)|+ |x′′(s)− y′′(s)|

)
ds

+
1

Γ(α− 2)

∫ t

a
(t− s)α−3d∗

(
|x(s)− y(s)|+ |x′(s)− y′(s)|+ |x′′(s)− y′′(s)|

)
ds
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≤ d∗‖x− y‖C2

(∫ t
a (t− s)α−1ds

Γ(α)
+

∫ t
a (t− s)α−2ds

Γ(α− 1)
+

∫ t
a (t− s)α−3

Γ(α− 2)

)
= ηd∗‖x− y‖C2 .

Since η · d∗ < 1, by Banach contraction principle, T has a unique fixed point which is the 104

unique solution of the problem (1), and the proof is complete. 105

4. Conclusions 106

In this work, we consider a class of nonlinear resonant boundary value problem with 107

(left) fractional Caputo derivative of order α ∈ (2, 3). Applying Mawhin’s coincidence 108

Theorem, we obtained conditions that guarantee the existence of solutions of the problem 109

(1). Imposing a Lipschitz condition on the function f and an inequality, with Banach 110

contraction principle, we proved the uniqueness of solution. 111
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