

Manuscript ID: sciforum-069586; Section: Mathematics and Computer Science

What are Recurrent Expansion Algorithms? Exploring a Deeper Space than Deep Learning

Tarek Berghout^{1,*} and Mohamed Benbouzid^{2,3}

¹ University of Batna 2, Laboratory of Automation and Manufacturing Engineering; 05000 Batna; **Algeria**; e-mail: <u>t.berghout@univ-batna2.dz</u>

² University of Brest; UMR CNRS 6027 IRDL; 29238 Brest; France; email: Mohamed.Benbouzid@univ-brest.fr

³ Logistics Engineering College; Shanghai Maritime University; Shanghai 201306, **China**

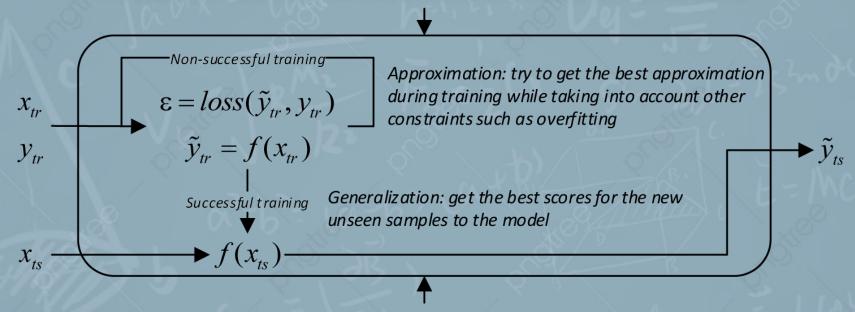
* Correspondance : <u>t.berghout@univ-batna2.dz</u>

Presentation map:

- 1) Introduction: main research gaps;
- 2) REMR Algorithms: Definitions, main difference and learning rules;
- 3) Illustrative examples: classification;
- 4) Conclusions: Advantages, disadvantages, future opportunities of REMR.

1) Introduction: main research gaps

Key Challenges: Rapid Changes in Data Characteristics: Volume, Velocity, and Variety



Building a Machine Learning Model

2) REMR Algorithms: Definitions, main difference and learning rules

$$y = f(x)$$

Machine Learning: Obtain the best approximation by considering optimization of the parameters as the main element of the best generalization

$$y = f(\varphi(x))$$

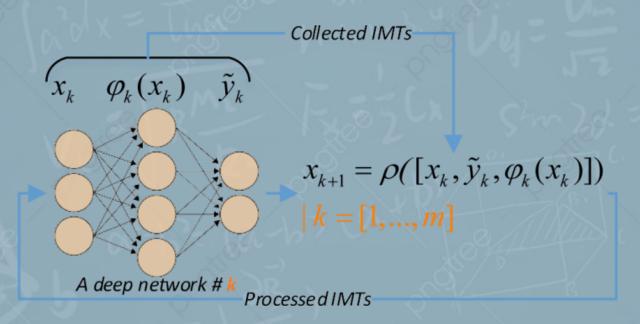
Deep learning: Apart from parameters optimization, representation learning is the main element for improving approximation and generalization.

$$y_{k+1} = f(\varphi_{k+1}(x_k + 1)) | k = 1 \to m$$

$$x_{k+1} = \rho([x_k, \tilde{y}_k, \varphi_k(x_k)])$$

Recurring Expansion: Merging entire Deep nets including Inputs, Maps, and Estimated Targets (**IMTs**) into other Deep nets consecutively for multiple rounds

2) REMR Algorithms: Definitions, main difference and learning rules



Schematic diagram of REMR Algorithm

2) REMR Algorithms: Definitions, main difference and learning rules

Inputs: x_k , y_k , n_k , ite_k

Outputs: \tilde{y}_m

1) Start training process

For $k = 1 \rightarrow m$

2) Train the deep network and collect IMTs

$$x_{k+1} = \rho_k([x_k, \varphi_k(x_k), \tilde{y}_k])|_{k=1}$$

3) Evaluate the AULC

$$AULC_k = \int_0^{ite(k)} l_k(x_k) \ dx_k$$

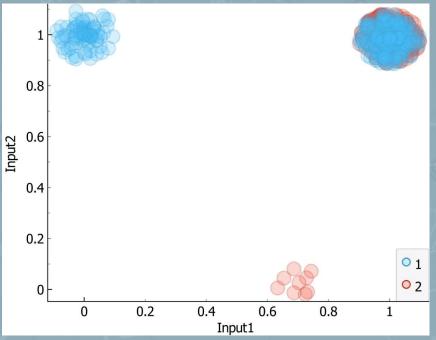
4) Reinitialize parameters

$$x_k = x_{k+1}$$

End(For)

Learning steps of REMR Algorithm

3) Illustrative examples: classification (20 rounds with LSTM REMR)



Animated IMTs improving process through REMR

T. Berghout, M. Benbouzid, and M. A. Ferrag, "Deep Learning with Recurrent Expansion for Electricity Theft Detection in Smart Grids," in *IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society*, Oct. 2022, pp. 1–6, doi:. 10.1109/IECON49645.2022.9968378

4) Conclusions: Advantages, disadvantages, future opportunities of REMR

Advantages of REMR

- Improve feature representations through understanding different IMTs of different deep networks;
- Providing a new source of information, such as estimated targets, helps to introduce additional knowledge;
- Building an REMR algorithm does not require much intervention;
- Improve feature representations and also the correction of outliers.

4) Conclusions: Advantages, disadvantages, future opportunities of REMR

Disadvantages of REMR

- REMR requires more computational power than ordinary deep learning;
- Stacking in the inappropriate IMTs will cause the AULC function to diverge, which could lead to a worse outcome at each round;
- IMTs initialization is evaluated by the basis of errors and trials, which means that it takes a lot of intervention when rebuilding the model at this stage.

4) Conclusions: Advantages, disadvantages, future opportunities of REMR

Future opportunities of REMR

- Target IMTs initialization problems by performing experiments on IMT selection and optimization in a few primary rounds. This will be useful in deciding whether we go with this model or not without consuming a lot of computing resources throughout the training rounds;
- Explore available REMR architecture inspired by ensemble learning and parallel architectures to help deliver even better initial IMTs.

Thank you

On behalf of the co-authors of manuscripts [sciforum-069586], I would like to thank the IOCMA committee for contributing to the success of this event. Also, I would like to thank mathematics editors for this golden opportunity to showcase our work. I would also like to thank everyone who sponsored and helped make this event happen, including all the journals and contributors to this event.

