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Abstract: In this article we developed the idea of q_time scale calculus in quantum geometry. It 

includes the q_time scale integral operators and ∆q_differentials. Its analysis the fundamental prin-

ciples which follow the calculus of q_time scale comparing with the Leibnitz-Newton usual calculus 

and have few crucial consequences. The ∆q-differential reduced method of transformationis pro-

posed to work out on partial Δq-differential equations in time scale. With easily computable coeffi-

cients the result is calculated in the version of a power series which is convergent. It is also illustrated 

the performance and effectiveness of the proposed procedure and applying Matlab software for 

calculation with the support of some fascinating examples. It changes when 𝜎(𝑡) = 𝑡 and q = 1, then 

the solution merges with usual calculus for the mentioned initial value problem. The finding of the 

present work is that the Δq_differential transformation reduced method is convenient and efficient. 

Keywords: Δq-differential; q_time scale; q-Integral operators; Δq-differential reduced transform 
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1. Introduction 

In sense of mathematical objects each and every theory of physics is articulated. 

Therefore, it is important to launch a number of formulas to frame any physical objects 

and concepts towards mathematical objectives where we study to epitomize them. As in 

classical mechanics, many times this function is appeared, in consequences for many the-

ories, like mechanics of quantum, the mathematical things rarely revealing. This study 

focused mainly the closed quantum systems which consist of intrinsic components like 

states, observables, measurements, and evolution. Quantum geometry which dates back 

to the early days of quantum mechanics is characterized by Heisenberg’s commutation 

relations [2,3] 

These relations indicate that the classical phase space geometry is lost when position 

and momentum coordinates fail to commute. This leads to a non-commutative geometric 

space that is distinct from algebraic geometry, where the spaces are affine schemes built 

on a correspondence between spaces and commutative algebras. The Gelfand-Naimark 

theorem [8] provides a closer connection to differential geometry, associating spaces with 

topological spaces and commutative C*-algebras. Recent work has shown that non-com-

mutative geometry in quantum geometry is intimately linked to delta q-deformed calcu-

lus, which is a generalization of quantum calculus. Our goal is to use ∆𝑞-calculus results 

to study non-commutative differential equations, specifically by employing the reduced 
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q delta-differential transform method to solve partial ∆𝑞-differential equations. Further-

more, we introduce that this algebra of operator [4–6] bring in shape some types of geo-

metric space of non-commutative. On contrary algebraic geometry [7,8], that is established 

on a mapping between commutative algebras and spaces, this mapping in specific link with 

a part of space, the functions algebra on it, and then in a completely algebraic structure 

geometric concepts are described. This rule is the top logical initiative for general geome-

try like geometry of quantum. At the same time for, they are affine schemes spaces, for 

algebraic geometry. Noncommutative differential equations in time sca calculus have im-

portant applications in various areas of mathematics and physics, including quantum 

groups, quantum field theory, and statistical mechanics. 

In quantum geometry Maliki et al. in [9] studied the concepts of deformed q_calculus. 

Here, they demonstrated how the q_calculus, an expanded version of the Leibnitz and 

Newton standard calculus, and the mathematical discipline of invariant geometry are in-

timately related. In this study, we review a few results from the q_time scale calculus that 

will aid in our observation of invariant differential equations. In particular, we will use 

the q_Delta-differential transform reduced method (qDDRTM) to examine partial q_Delta 

differential equations. 

1.1. Operator of the q_Delta Differential 

For 1 < 𝑞 ∈ < 𝑅, we establish the delta 𝑞_derivative ∆𝑞 as; 

∆q𝑓(𝑡) =
𝑓(𝜎(𝑡)) − 𝑓(𝑡)

𝜇(𝑡)
 (2) 

Note that ∆q→ 𝑓′(t) ≡
d

dt
, as q  tends to 1 

We assume the following supporting notable points. 

(a) F.H. Jackson [10] discussed the modified version of 𝑞_derivative and its several con-

sequences in 20th century. 

(b) The functions those do not have 0 in their definition domain the ∆q_derivative can 

be calculated for those functions. As q is at 1, it decreases to a common derivative. 

(c) It can be checked easily that the ∆q_operator is linear operator, i.e., 

(i) ∆q(f + g) = ∆qf + ∆qg 

(ii) ∆q(λf) = λ∆qf 
(3) 

1.2. The q_∆ Derivative of Few Transcendental Mappings and Non Commutative Concept 

Maliki et al. in [9] discussed noncommutative differential equation in q calculus is 

the q-difference equation 

𝐷𝑞𝑓(𝑥) =
𝑑𝑞

𝑑𝑞𝑥
𝑓(𝑥) =

𝑓(𝑞𝑥)−𝑓(𝑥)

(𝑞−1)𝑥
, where x ≠  0, 0 < q < 1  

𝑓(𝑞𝑥) − 𝑓(𝑥) = 

𝑑𝑞

𝑑𝑞𝑥
𝑓(𝑥)(𝑞−1)

𝑞
 where q is a deformation parameter that determines the 

degree of noncommutativity in the calculus. 

f(𝜎(𝑡)) − f( 𝑡) =
∆q𝑓(𝑡)𝜇(𝑡)

𝑞
  

The noncommutativity of the q delta-derivative makes it more challenging to solve, 

but methods such as the q delta-differential transform method can be used to obtain solu-

tions. 

Following the method of calculating the ∆q_derivative (non commutative in time 

scales calculus) by the first principles, we now get salient features for the ∆q_operatorof 

the below mentioned mappings like 𝑒𝑡 and Sint. 
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q_Delta operator of the Function 

ℎ(t) = sin 𝑡  

By definition, we have 

∆q𝑆𝑖𝑛(𝑡) =
sin(𝜎(𝑡)) − sin 𝑡

𝜇(𝑡)
  

∆q(𝑆𝑖𝑛𝑡) =
(𝜎(𝑡) −

1
3!
(𝜎(𝑡))3 +

1
5!
(𝜎(𝑡))5 −

1
7!
(𝜎(𝑡))7 + ⋯⋯) − (𝑡 −

1
3!
𝑡3 +

1
5!
𝑡5 −

1
7!
𝑡7 + ⋯⋯)

𝜇(𝑡)
 (4) 

Note: by setting 𝜎(𝑡) = 𝑞𝑡in ∆q(𝑆𝑖𝑛 𝑡)we obtain the results of quantum calculus. 

By using theresult: 

When 𝜎(𝑡) = 𝑡 in (4), we get the standard derivative of sine function, i.e., 

𝑑

𝑑𝑡
(sin 𝑡) = 1 −

1

3!
𝑡2(3) +

1

5!
𝑡4(5 ) −

1

7!
𝑡6(7 ) + ⋯⋯ 

= 1 −
1

2!
𝑡2 +

1

4!
𝑡4 −

1

6!
𝑡6 +⋯⋯  = 𝑐𝑜𝑠 𝑡. 

(5) 

1.3. q_Time Scale Factorials and q_Timescale Numbers 

Basically, we adopt the notations and symbols in [11]. Thusℤ+ denoted the set of 

integers which is positive. More, Mdenotes a field which has 0 characteristic throughout 

this research article and M(q) represents the rational functions field in one parameter q 

over N(q). In the q_deformed setting N(q) is our ground field, while Nis the ground field 

in the standard setting. We define the q_binomials, q_integers andq_factorials respectively 

as follows: 

1. ⟦𝑝⟧𝑞 =
𝑞𝑡−1

𝑞−1
= ∑ 𝑞𝑗

𝑝−1
𝑗=0   (6) 

2. ⟦𝑝⟧𝑞! = ⟦𝑝⟧𝑞 × ⟦𝑝 − 1⟧𝑞 × ⟦𝑝 − 2⟧𝑞 ×⋯⋯× ⟦3⟧𝑞 × ⟦2⟧𝑞 × ⟦1⟧𝑞;  

where ⟦0⟧𝑞! = 1 
(7) 

3. {𝑝
𝑟
}
𝑞
=

⟦𝑝⟧𝑞!

!⟦𝑝−𝑟⟧𝑞! ⟦𝑟⟧𝑞
, ∀ p, r∈ N0, p ≥ r (8) 

We have an example g (t) = tp, then 

∆𝑞𝑔(𝑡) = 𝜎(𝑡)
𝑝−1 + 𝑡𝜎(𝑡)𝑝−2 + 𝜎(𝑡)𝑝−3𝑡2 +⋯⋯⋯⋯ tp−1  

Setting 𝜎(𝑡) = 𝑡, we have classical derivative 
𝑑

𝑑𝑡
𝑔(𝑡)= p tp−1 

And in q_calculus it becomes: 

𝑑

𝑑𝑞𝑡
(𝑔(𝑡)) = ⟦𝑝⟧𝑞 t

p−1;where we consider 𝜎(𝑡) = 𝑞𝑡  (9) 

Remarks 

The characteristics and proofs of the q_factorials, q_integers and q_binomials are 

discussed in [9]. Now we have the below results on the ∆𝑞_operator. For 𝑞 ≠ 1 ∈ ℝ, 

and with ∆𝑞 is defined here. 

(1) ∆𝑞𝑔(𝑡) = ∑
(𝜇(𝑡))𝑝

(1+𝑟)!

𝑑𝑝+1

𝑑𝑡𝑝+1
𝑔(𝑡)∞

𝑝=0   (10) 

(2) ∆𝑞
𝑝
𝑔(𝑡) =

𝑞(𝑝−1)/2

𝜎(𝑡)𝑝(𝑞−1)𝑝
∑ {

𝑝
𝑟
}
𝑞
𝑓(𝑞𝑝−1−𝑗𝜎(𝑡))(−1)𝑗𝑞

𝑟(𝑟−1)

2
𝑝
𝑟=0   (11) 
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(3) ∆𝑞{𝑤(𝑡)𝑣(𝑡)} = 𝑣(𝑡)∆𝑞𝑤(𝑡) + 𝑤(𝜎(𝑡))∆𝑞𝑣(𝑡)  (12) 

(4) ∆𝑞 {
𝑤(𝑡)

𝑣(𝑡)
} =

𝑣(𝜎(𝑡))∆𝑞𝑤(𝑡)−𝑤(𝜎(𝑡))∆𝑞𝑣(𝑡)

𝑣(𝑡)𝑣(𝜎(𝑡))
  (13) 

1.4. Partial ∆𝒒-Derivative of Multivariable Function in Time Scale 

We define the continuous multivariable real valued function and partial ∆𝑞_deriva-

tive of a function 𝑔(t1, t2, …, tn)with respect to a variable 𝑡𝑖by; 

∆𝑞,𝑡𝑗𝑔(𝑡) =
(𝜕𝑞,𝑗𝑔)(𝑡)−𝑔(𝑡)

(1−𝑞)𝑡𝑗
  (14) 

[∆𝑞,𝑡𝑗𝑔(𝑡)]𝑡𝑗=0
= lim

𝑡𝑗→0
∆𝑞,𝑡𝑗𝑔(𝑡)   (15) 

where t = (t1, t2, ⋯⋯ , tp) 

And (𝜕𝑞,𝑗𝑔)(𝑡)  =  𝑔(t1, t2, ⋯⋯ , σ(𝑡𝑗)⋯⋯⋯ 𝑡n) 

For the jthorder ∆𝑞order derivative subsequently we adopt the identity with respect 

to 𝑡𝑗. 

The solution of partial ∆𝑞_differential equations using the innovative q_differential 

transform approach presented in [13] is currently our main goal. 

(1) ∆𝑞_Differential reduced Transformation Method Considering that all ∆𝑞_differ-

entials of v(t, x) exist in a region where x = a, we shall let 

𝑉𝑗(𝑡) =
1

⟦𝑗⟧𝑞!
[
𝜕𝑞
𝑗

∆𝑞𝑥
𝑗 𝑣(𝑡, 𝑥)]

𝑡=𝑎

  (16) 

where 𝑊𝑗(𝑥) is the transformed spectrum function of x-dimensional. Resultantly, the up-

percase 𝑊𝑗(𝑡) represents for the transformed mapping. While mapping of lower case 

𝑣(𝑡, 𝑥) shows the original function. Now we have the below important definition. 

Definition. The inverse transform of ∆𝑞_differential of 𝑊𝑗(𝑡) is defined by; 

𝑣(𝑡, 𝑥) = ∑ 𝑊𝐾(𝑡)(𝑥 − 𝑐)
(𝑗)∞

𝑗=0  (17) 

putting Equations (16) in Equation (17) we get: 

𝑊𝑗(𝑡) = ∑𝑊𝐾(𝑡) =
1

⟦𝑗⟧𝑞!
[
𝜕𝑞
𝑗

∆𝑞𝑥
𝑘
𝑣(𝑡, 𝑥)]

𝑡=𝑎

(𝑥 − 𝑐)(𝑗)
∞

𝑗=0

  

In the coming theorems, we let c = 0 such that (𝑥 − 𝑐)(𝑗)=(𝑥 − 0)(𝑗)=(𝑡)(𝑗). 

We can construct the below mentioned fact from the linearity of the ∆𝑞-derivative, 

given 𝑧(𝑡, 𝑥) = 𝛽𝑣(𝑡, 𝑥) ± 𝑢(𝑡, 𝑥)  then 𝑍𝑗(𝑡) =𝑊𝑗(𝑡) ± 𝑈𝑗 .  We have the following im-

portant theoremas 𝛽 being a constant. 

Theorem. Given 𝑧(𝑡, 𝑥)= 𝑡𝑟𝑥𝑝 then 𝑍𝑗(𝑡) =  𝑡
𝑟𝛿(𝑗 − 𝑝) where 

𝛿(𝑗) = {
0,        𝑘 ≠ 0
1,         𝑘 = 0

 (18) 

Proof. From definition (20), we have; 

𝑍𝑗(𝑡) =
1

[⟦𝑗⟧]𝑞!
[
𝜕𝑞
𝑗
(𝑡𝑟𝑥𝑝)

∆𝑞𝑥
𝑗 𝑣(𝑡, 𝑥)]

𝑥=0

 = 
𝑡𝑟

[⟦𝑝⟧]𝑞!
[
𝜕𝑞
𝑗
(𝑡𝑚𝑥𝑝)

∆𝑞𝑥
𝑗 𝑣(𝑡, 𝑥)]

𝑥=0
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 𝑡𝑟 .

⟦𝑝⟧𝑞 !
⟦𝑝⟧𝑞!

= 𝑡𝑟 ,         𝑗 = 𝑝

𝑡𝑟 .
⟦𝑝𝑞⟧. ⟦(𝑝 − 1)⟧𝑞 …⟦(𝑝 − 𝑗 + 1)⟧𝑞

⟦𝑝⟧𝑞!

𝑡𝑟 . 0 = 0.          𝑗 > 𝑝

   𝑥𝑝−𝑗|
𝑥=0 ,      

 𝑗 ≠ 0 (19) 

=𝑡𝛿(𝑗 − 𝑝)  

Theorem. Given 𝑧(𝑡, 𝑥)= 
𝜕𝑞

∆𝑞𝑡
v(𝑡, 𝑥) then 𝑍𝑗(𝑡) = 

∆𝑞

𝜕𝑞𝑡
 V(𝑡). 

Proof. 

𝑍𝑗(𝑡) =
1

⟦𝑗⟧𝑞!
[
𝜕𝑞
𝑗

∆𝑞𝑥
𝑗
(
𝜕𝑞

∆𝑞
𝑡 𝑣(𝑡, 𝑥))] =

1

⟦𝑗⟧𝑞!
[
𝜕𝑞

∆𝑞
𝑥 (

𝜕𝑞
𝑗

∆𝑞𝑥
𝑗
𝑣(𝑡, 𝑥))]

𝑥=0

 (20) 

𝜕𝑞

∆𝑞
𝑡

1

⟦𝑗⟧𝑞!
[
1

⟦𝑗⟧𝑞!
(
𝜕𝑞
𝑗

∆𝑞𝑥
𝑗
𝑣(𝑡, 𝑥))]

𝑡=0

=
𝜕𝑞

∆𝑞
𝑡 𝑉𝑗(𝑡)  

Theorem. Given 𝑧(𝑡, 𝑥)= 
𝜕𝑞

∆𝑞𝑡
(v(𝑡, 𝑥)), then 

𝑍𝑗(𝑡) = ⟦𝑗 + 1⟧𝑞⟦𝑗 + 2⟧𝑞⋯⋯⟦𝑗 + 𝑘⟧𝑞𝑉𝑗+𝑘(𝑡) (21) 

Proof. 

𝑍𝑗(𝑡) =
1

⟦𝑗⟧𝑞!
[
𝜕𝑞
𝑗

∆𝑞𝑥
𝑗
(
𝜕𝑞
𝑘

∆𝑞𝑥
𝑟
𝑣(𝑡, 𝑥))]  

=
⟦𝑗 + 𝑘⟧𝑞!

⟦𝑗⟧𝑞!

1

⟦𝑗 + 𝑘⟧𝑞!
[(

𝜕𝑞
𝑗+𝑘

∆𝑞𝑥
𝑗+𝑘

𝑣(𝑡, 𝑥))]

𝑥=0

  

= ⟦𝑗 + 1⟧𝑞⟦𝑗 + 2⟧𝑞⋯⋯⟦𝑗 + 𝑘⟧𝑞𝑉𝑗+𝑘(𝑡)  

Example. 

𝜕𝑞

∆𝑞
𝑥 𝑣(𝑡, 𝑥) = 𝑣

2(𝑡, 𝑥)  +
𝜕𝑞

∆𝑞
𝑡 𝑣(𝑡, 𝑥), 𝑣(𝑡, 0) =  1 +  3𝑡  (22) 

Using the reduced q_differetial transform method of the given partial ∆𝑞_differen-

tial equation, we obtain: 

⟦𝑗 + 1⟧𝑞𝑉𝑗+1(𝑡) = ∑ 𝑉𝑗−𝑝(𝑡)𝑉𝑗(𝑡)  +  
𝜕𝑞

∆𝑞
𝑥 𝑉𝑗(𝑡),

𝑗
𝑝=0   (23) 

The given initial condition forms. 

𝑉𝑂(𝑡) = 𝑣(𝑡, 𝑜) = 1 + 3𝑡.  

Initiating with j = 0, the values of the function 𝑉𝑗(𝑡) are calculated successively as 

given below; 

⟦1⟧𝑞𝑉1(𝑡) = 𝑉𝑜(𝑡)𝑉𝑜(𝑡)  + 
𝜕𝑞

∆𝑞
𝑡 𝑉𝑜(𝑡)  
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= (1 + 3𝑡)2  +  
𝜕𝑞

∆𝑞
𝑡 𝑉𝑜(1 + 3𝑡) =  (1 + 3𝑡)

2 + 3 (29) 

𝑉1(𝑡) = 4 + 6𝑡 + 9𝑡
2  

where j = 1, we have 

(
𝑞2 − 1

𝑞 − 1
)𝑉2(𝑡) = 2𝑉𝑜(𝑡)𝑉1(𝑡)  + 

𝜕𝑞

∆𝑞
𝑡 𝑉1(= 2(1 + 3𝑡)(4 + 6𝑡 + 9𝑡2)   

                                         + 
𝜕𝑞

∆𝑞
𝑡 𝑈𝑜(4 + 6𝑡 + 9𝑡

2)  

∴ 𝑉2(𝑡) =
14 + 9(5𝑡 + 𝜎(𝑡)) + 54𝑡2 + 54𝑡3

1 + 𝑞
 (24) 

Below are the same method, it is simple to calculate an expression for 2 = j. 

Normally, we need solution of the partial ∆𝑞_differential equation to be: 

v(t, x) = 1 + 3t + (4 + 6𝑡 + 9𝑡2)x + (
14 + 9(𝜎(𝑡) + 5𝑡) + 54𝑡2 + 54𝑡3

1 + 𝑞
) x2 +    (25) 

Let’s now determine the classical form of the partial q_Delta differential equation 

provided, i.e., 

𝜕

∆𝑡
𝑣(𝑡, 𝑥) = 𝑣2(𝑡, 𝑥) +

𝜕

∆𝑡
𝑣(𝑡, 𝑥),   

𝑣(𝑡, 0) = 1 + 3𝑡 (26) 

By the characteristics method the above first order partial differential equation of 

Quasilinear can be solved easily. The auxiliary associated equations are; 

𝑑𝑥

1
=
𝑑𝑣

𝑣2
= −

𝑑𝑡

1
 (27) 

These provide two potential integrals that are provided by; 

x + t = a1 and 
1

v
+ x = a2 (28) 

where, a1, a2 are considered as constants of integration which are arbitrary. Using the 

initial condition, we have at x = 0, v = 1 + 3t. Hencet = a and 
1

1+3t
= a2. 

It then gives that 

1

1 + 3a1
= a2.  

Consequently, the necessary solution is 

x +
1

t
=  

1

1 + 3(x + t)
 or v(x, t) =  

1 + 3(x + t)

1 − x(1 + 3t) − 3x2
 (29) 

Using MatLab, a software for numerical solution and adding powers of x to the for-

mula for v results in the following. 

v(x, t) =  (1 + 3t) + (4 + 6t + 9t2)x  

                      +(7 + 27t2 + 27t3)x2 +⋯ (30) 

Here we have an interesting observation that when we put 𝜎(𝑡) = 𝑡 and 𝑞 = 1 in (30) 

we successfully arrive at the conventional PDE’s solution. 
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1.5. Conclusions 

The concept of the q_time scale calculus in quantum geometry is described in this 

research article. For this purpose, we include discussion of the principlefrom q_calculus 

comparing with the usual-Leibnitz and Newton calculus. Our basic aim is to obtainthe 

consequences acquired to deal partial Δ𝑞_differential equations. For this goal we initiated 

the concept of the Δ𝑞_differential reduced method of transformation that leads conver-

gent solution of power serieswith easily computable sections. We were able to demon-

strate the effectiveness and convenience of the proposed iteration technique using a few 

cases. It merges to standard form solution with initial value problems that when q = 1 and 

 𝜎(𝑡) = 𝑡. Deduce conclusion is thatq_time scale calculus is invariant, that is non-commu-

tative calculus which coincides the Leibnitz-Newton standard calculus. This work intro-

duced and generalized the qDDTM to work on partial q_differential equations, which 

represent non-commutative spaces form of some dynamics. 
 

Data Availability Statement: The data used in this article will be provided upon the reasonable 

request.  

Acknowledgments: The authors are grateful to the research team for their dedication and hard-

working. 

Conflicts of Interest:  

References 

1. Laragno, A.; Gervino, G. Quantum Mechanics in q_Deformed Calculus. J. Phys. Conf. Ser. 2009, 174, 012071. 

https://doi.org/10.1088/1742-6596/174/1/012071. Sadik, M.O.; Orie, B.O. Application of q-Calculus to the Solution of Partial q-

Differential Equations. Appl. Math. 2021, 12, 669–678. https://doi.org/10.4236/am.2021.128047. 

2. Connes, A. Noncommutative Geometry; Academic Press: New York, NY, USA, 1994. 

3. Connes, A. Non-Commutative Differential Geometry. Publ. Mathématiques De L’institut Des Hautes Études Sci. 1986, 62, 41–144. 

https://doi.org/10.1007/BF02698807. 

4. Connes, A. Noncommutative Differential Geometry. Publ. Mathématiques de l’I.H.É.S 1985, 62, 257–360. 

5. Connes, A. Noncommutative Geometry; Academic Press: London, UK, 1994; p. 126. 

6. Majid, S. Physics for Algebraists: Non-Commutative and Non-Commutative Hopf Algebras by a Bicrossproduct Construction. 

J. Algebra 1990, 130, 17–64. 

7. Drinfeld, G. Quantum Groups. In Proceedings of the ICM 1986; Gleason, A., Ed.; AMS: RI, USA, 1986; pp. 798–820. 

8. Brown, L.G.; Douglas, R.G.; Filmore, P.G. Extensions of C*-Algebras and K-Homology. Ann. Math. 1977, 105, 265–324. 

https://doi.org/10.2307/1970999. 

9. Maliki, O.S.; Ugwu, E.I. On q-Deformed Calculus in Quantum Geometry. Appl. Math. 2014, 5, 1586–1593. 

https://doi.org/10.4236/am.2014.510151. 

10. Jackson, H.F. q-Difference Equations. Am. J. Math. 1910, 32, 305–314. https://doi.org/10.2307/2370183. 

11. Connes, A. C*-algèbres et géométrie différentielle. Comptes Rendus de L’académie Des Sci. 1980, 290, 599–604. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


