IOCMA 2023

The 1st International Online Conference on Mathematics and Applications-A Celebration of the 10th Anniversary of Mathematics' Impact on Our Wellbeing

$$
\text { 1-15 May } 2023
$$

Session 11 : Difference and Differential Equations
Existence and uniqueness of a solution of a Wentzell's problem with nonlinear delays

Presenter: Ihaddadene Lila

University of Sciences and Technology Houari Boumediene, Algiers, Algeria

Work plan

(1) Introduction
(2) Existence and uniqueness result of a solution
(3) Conclusion
(1) References

Introduction

Origin of the Wentzell's problem

Throughout history, the wave equation has known a great deal of work.
In our work, we are particularly interested in the wave equation with boundary conditions of the Wentzell type, which are characterized by the presence of differential operators of the same order as the main operator.
These problems are involved in the modeling of many phenomena:

- Mechanical like elasticity
- Physics such as diffusion processes or wave propagation

Origin of the Wentzell's problem

Wentzell's conditions are obtained by asymptotic methods from transmission problems, (Lemrabet. K [1]).
The following condition :

$$
\partial_{\nu} u-\triangle_{T} u=g \quad \text { on } \Gamma
$$

for this equation

$$
-\triangle u+u=f \quad \text { in } \Omega
$$

was first introduced by Wentzell (Ventcel) in 1959 [3], for diffusion processes.
It models the heat exchange of the body Ω with the surrounding environment in the presence of a thin film, very good conductor, on the surface of the body.

The delay effect

Delay is the property of a physical system by which the response to an applied force is retarded in its effect.
Whenever material, information, or energy is physically transmitted from one place to another, there is a delay present, a delay in the law of feedback modeling mechanical shift over time.
Delays so often occur in many:

- Physical problems
- Chemical, biological and economic phenomena

The model studied

We consider a wave equation with dynamical Wentzell type boundary conditions, two non linear dissipations and delay terms are localised in domain Ω and on part of boundary Γ_{1}, given by :

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\mu_{1} g_{1}\left(u_{t}\right)+\mu_{2} g_{1}\left(u_{t}(t-\tau)\right)=0, \text { in } \Omega \times(0, \infty), \tag{1}\\
u=v, \text { on } \Gamma \times(0, \infty), \\
u=0, \text { on } \Gamma_{0} \times(0, \infty), \\
v_{t t}+\frac{\partial u}{\partial v}-\Delta_{T} v+\mu_{1}^{\prime} g_{2}\left(v_{t}\right)+\mu_{2}^{\prime} g_{2}\left(v_{t}(t-\tau)\right)=0, \text { on } \Gamma_{1} \times(0, \infty) .
\end{array}\right.
$$

Our objective is to show that this problem is well posed, that there is existence and uniqueness of a solution.

The model studied

Equipped with the following initial conditions

$$
\begin{align*}
& (u(0), v(0))=\left(u_{0}, v_{0}\right), \text { in } \Omega \times \Gamma \tag{2}\\
& \left(u_{t}(0), v_{t}(0)\right)=\left(u_{1}, v_{1}\right), \text { in } \Omega \times \Gamma \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& u_{t}(x, t-\tau)=f_{0_{1}}(x, t-\tau), \text { in } \Omega \times(0, \tau), \tag{4}\\
& v_{t}(x, t-\tau)=f_{0_{2}}(x, t-\tau), \text { on } \Gamma_{1} \times(0, \tau) . \tag{5}
\end{align*}
$$

The model studied

- Ω is a bounded open in $\mathbb{R}^{n},(n \geq 2)$, with smooth boundary $\partial \Omega=\Gamma$, divided into two disjoint open subsets Γ_{0} and Γ_{1}, such that $\Gamma=\Gamma_{0} \cup \Gamma_{1}$ and $\varnothing=\overline{\Gamma_{0}} \cup \overline{\Gamma_{1}}$.
- $\Delta_{T} v$ represents the tangentiel Laplacien.
- $\frac{\partial u}{\partial v}$ is the normal derivative of u where v represents the normal unit field to Γ, outward to Ω.
- The terms $g_{1}\left(u_{t}(x, t-\tau)\right)$ and $g_{2}\left(v_{t}(x, t-\tau)\right)$ describe the delays on the nonlinear frictional dissipations $g_{1}\left(u_{t}\right)$ and $g_{2}\left(v_{t}\right)$, on Ω and Γ_{1}, respectively.
- $\mu_{1}, \mu_{1}^{\prime}, \mu_{2}$ and μ_{2}^{\prime} are positive real numbers.
- $\tau>0$ is a time delay.

The model studied

This model describes vibrations of a flexible body with a thin boundary layer of high rigidity on its boundary Γ_{1}.

Figure

System transformation (1)-(5) :

We consider the following change of functions:

$$
\left\{\begin{array}{lll}
z_{1}(x, \rho, t)=u_{t}(x, t-\rho \tau), & x \in \Omega, \quad \rho \in(0,1), & t>0 \\
z_{2}(x, \rho, t)=v_{t}(x, t-\rho \tau), & x \in \Gamma_{1}, \quad \rho \in(0,1), & t>0
\end{array}\right.
$$

Therefore, the system (1)-(5) is equivalent to :

System transformation (1)-(5) :

$$
\begin{align*}
& u_{t t}-\Delta u+\mu_{1} g_{1}\left(u_{t}\right)+\mu_{2} g_{1}\left(z_{1}(x, 1, t)\right)=0, \text { in } \Omega \times(0, \infty), \\
& v_{t t}+\partial_{v} u-\Delta_{T} v+\mu_{1}^{\prime} g_{2}\left(v_{t}\right)+\mu_{2}^{\prime} g_{2}\left(z_{2}(x, 1, t)\right)=0, \text { on } \Gamma_{1} \times(0, \infty), \\
& \tau\left(z_{1}\right)_{t}(x, \rho, t)+\left(z_{1}\right)_{\rho}(x, \rho, t)=0, \text { in } \Omega \times(0,1) \times(0, \infty), \\
& \tau\left(z_{2}\right)_{t}(x, \rho, t)+\left(z_{2}\right)_{\rho}(x, \rho, t)=0, \text { on } \Gamma_{1} \times(0,1) \times(0, \infty), \\
& u=v, \text { on } \Gamma \times \mathbb{R}^{+}, \\
& u=0, \text { on } \Gamma_{0} \times \mathbb{R}^{+}, \\
& z_{1}(x, 0, t)=u_{t}(x, t), \text { in } \Omega \times \mathbb{R}^{+}, \\
& z_{2}(x, 0, t)=v_{t}(x, t), \text { on } \Gamma_{1} \times \mathbb{R}^{+}, \\
& (u(0), v(0))=\left(u_{0}, v_{0}\right), \text { in } \Omega \times \Gamma, \\
& \left(u_{t}(0), v_{t}(0)\right)=\left(u_{1}, v_{1}\right), \text { in } \Omega \times \Gamma, \\
& z_{1}(x, \rho, 0)=f_{0_{1}}(x,-\rho \tau), \text { in } \Omega \times(0,1), \\
& z_{2}(x, \rho, 0)=f_{0_{2}}(x,-\rho \tau), \text { on } \Gamma_{1} \times(0,1) . \tag{6}
\end{align*}
$$

Assumptions on the damping and delay functions gi for $\mathrm{i}=$

 1,2:$(\mathbf{A 1}) g_{i}: \mathbb{R} \longrightarrow \mathbb{R}$ is an odd non decreasing function of the class $\mathcal{C}^{1}(\mathbb{R})$ such that there exist r,(sufficiently small), $c_{i}, C_{i}, c, \alpha_{1}$, and $\alpha_{2}>0$ for $i=1,2$ and a convex, increasing function:
$H: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$of the class $\mathcal{C}^{1}\left(\mathbb{R}_{+}\right) \cap \mathcal{C}^{2}(] 0, \infty[)$, satisfying : $H(0)=0$ and H linear on $[0, r]$ or $\left(H^{\prime}(0)=0\right.$ and $H^{\prime \prime}>0$ on]0,r]), such that

$$
\begin{gather*}
c_{i}|s| \leq\left|g_{i}(s)\right| \leq C_{i}|s| \quad \text { if }|s| \geq r \tag{7}\\
s^{2}+g_{i}^{2}(s) \leq H^{-1}\left(s g_{i}(s)\right) \quad \text { if }|s| \leq r \tag{8}
\end{gather*}
$$

Assumptions on the damping and delay functions gi for $\mathrm{i}=$ 1,2:

$$
\begin{gather*}
\left|g_{i}^{\prime}(s)\right| \leq c, \tag{9}\\
\alpha_{1} s g_{i}(s) \leq G_{i}(s) \leq \alpha_{2} s g_{i}(s), \tag{10}
\end{gather*}
$$

where

$$
G_{i}(s)=\int_{0}^{s} g_{i}(y) d y .
$$

(A2) $\alpha_{2} \mu_{2}<\alpha_{1} \mu_{1}$ and $\alpha_{2} \mu_{2}^{\prime}<\alpha_{1} \mu_{1}^{\prime}$.

The energy of the problem (6):

We define the energy associated with the solution of the problem (6) by :

$$
\begin{gather*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{2}\|\nabla u\|^{2}+\frac{1}{2}\left\|v_{t}\right\|_{\Gamma_{1}}^{2}+\frac{1}{2}\left\|\nabla_{T} v\right\|_{\Gamma_{1}}^{2} \\
+\xi \int_{\Omega}\left(\int_{0}^{1} G_{1}\left(z_{1}(x, \rho, t)\right) d \rho\right) d x+\zeta \int_{\Gamma_{1}}\left(\int_{0}^{1} G_{2}\left(z_{2}(x, \rho, t)\right) d \rho\right) d \sigma \tag{11}
\end{gather*}
$$

where ζ and ζ are strictly positive constants, such that

$$
\begin{align*}
& \tau \frac{\mu_{2}\left(1-\alpha_{1}\right)}{\alpha_{1}}<\xi<\tau \frac{\mu_{1}-\alpha_{2} \mu_{2}}{\alpha_{2}} \tag{12}\\
& \tau \frac{\mu_{2}^{\prime}\left(1-\alpha_{1}\right)}{\alpha_{1}}<\zeta<\tau \frac{\mu_{1}^{\prime}-\alpha_{2} \mu_{2}^{\prime}}{\alpha_{2}} \tag{13}
\end{align*}
$$

Energy decay

The following lemma shows that the system (6) is dissipative.

Lemma

Let (u, v, z_{1}, z_{2}) be a solution of the problem (6). Then, there exist positive constants a_{1}, a_{2}, a_{3} and a_{4} such that for all $t \geq 0$:

$$
\begin{aligned}
E^{\prime}(t) \leq & -a_{1} \int_{\Omega} u_{t} g_{1}\left(u_{t}\right) d x-a_{2} \int_{\Gamma_{1}} v_{t} g_{2}\left(v_{t}\right) d \sigma \\
& \left.-a_{3} \int_{\Omega} z_{1}(x, 1, t)\right) g_{1}\left(z_{1}(x, 1, t)\right) d x \\
& \left.-a_{4} \int_{\Gamma_{1}} z_{2}(x, 1, t)\right) g_{2}\left(z_{2}(x, 1, t)\right) d \sigma \\
\leq & 0
\end{aligned}
$$

Energy decay

where $a_{1}=\left(\mu_{1}-\frac{\xi}{\tau} \alpha_{2}-\mu_{2} \alpha_{2}\right), a_{2}=\left(\mu_{1}^{\prime}-\frac{\zeta}{\tau} \alpha_{2}-\mu_{2}^{\prime} \alpha_{2}\right)$,
$a_{3}=\left(\alpha_{1} \frac{\tilde{\zeta}}{\tau}-\mu_{2}\left(1-\alpha_{1}\right)\right)$ and $a_{4}=\left(\alpha_{1} \frac{\zeta}{\tau}-\mu_{2}^{\prime}\left(1-\alpha_{1}\right)\right)$.

Existence and uniqueness result of a solution

Existence and uniqueness theorem

We introduce the following set:

$$
H_{\Gamma_{0}}^{1}(\Omega)=\left\{u \in H^{1}(\Omega) /\left.u\right|_{\Gamma_{0}}=0\right\}
$$

endow $H_{\Gamma_{0}}^{1}(\Omega)$ with the Hilbert structure induced by $H^{1}(\Omega)$. Now, we state the existence and uniqueness theorem :

Theorem

Let $\left(u_{0}, u_{1}, v_{0}, v_{1}\right) \in$ $\left.H^{2}(\Omega) \cap H_{\Gamma_{0}}^{1}(\Omega)\right) \times H_{\Gamma_{0}}^{1}(\Omega) \times H^{2}\left(\Gamma_{1}\right) \times H^{1}\left(\Gamma_{1}\right)$, $f_{0_{1}} \in H_{\Gamma_{0}}^{1}\left(\Omega ; H^{1}(0,1)\right)$ and $f_{0_{2}} \in H^{1}\left(\Gamma_{1} ; H^{1}(0,1)\right)$, satisfy the following compatibility condition:

$$
\begin{cases}\partial_{v} u_{0}-\Delta_{T} v_{0}+\mu_{1}^{\prime} g_{2}\left(v_{1}\right)=0 & \text { on } \Gamma_{1} \tag{15}\\ f_{0_{1}}(., 0)=u_{t} & \text { in } \Omega \\ f_{0_{2}}(., 0)=v_{t} & \text { on } \Gamma_{1}\end{cases}
$$

Existence and uniqueness theorem

We suppose that (A1) and (A2) hold, then problem (6) possesses a unique global weak solution satisfying for $T>0$:

$$
\begin{aligned}
& \left(u, u_{t}, u_{t t}\right) \in L^{\infty}\left(0, T ;\left[H_{\Gamma_{0}}^{1}(\Omega)\right]^{2} \times L^{2}(\Omega)\right) \\
& \left(v, v_{t}, v_{t t}\right) \in L^{\infty}\left(0, T ;\left[H^{1}\left(\Gamma_{1}\right)\right]^{2} \times L^{2}\left(\Gamma_{1}\right)\right)
\end{aligned}
$$

Proof of Theorem

We use the Faedo-Galerkin's method.
Let us define the approximations u^{n}, v^{n}, z_{1}^{n} and z_{2}^{n} by

$$
\begin{aligned}
& u^{n}(t)=\sum_{i=1}^{n} a_{i}^{n}(t) w_{i}, v^{n}(t)=\sum_{i=1}^{n} b_{i}^{n}(t) \widetilde{w}_{i}, z_{1}^{n}(t)=\sum_{i=1}^{n} c_{i}^{n}(t) \phi_{i} \\
& z_{2}^{n}(t)=\sum_{i=1}^{n} d_{i}^{n}(t) \widetilde{\phi}_{i}
\end{aligned}
$$

where $a_{i}^{n}, b_{i}^{n}, c_{i}^{n}$ and d_{i}^{n} are from the class \mathcal{C}^{2} and $\left\{w_{i}\right\}_{1 \leq i \leq n}$, $\left\{\widetilde{w}_{i}\right\}_{1 \leq i \leq n},\left\{\phi_{i}\right\}_{1 \leq i \leq n}$ and $\left\{\widetilde{\phi}_{i}\right\}_{1 \leq i \leq n}$ are basis in the spaces $H^{2}(\Omega) \cap H_{\Gamma_{0}}^{1}(\Omega), H^{2}\left(\Gamma_{1}\right) \cap H^{1}\left(\Gamma_{1}\right), L^{2}(\Omega \times(0,1))$ and $L^{2}\left(\Gamma_{1} \times(0,1)\right)$, respectively,

Proof of Theorem

and verifying the following differential equations:

$$
\begin{align*}
& \quad\left(u_{t t}^{n}, w_{i}\right)+\left(\nabla u^{n}, \nabla w_{i}\right)+\mu_{1}\left(g_{1}\left(u_{t}^{n}\right), w_{i}\right)+\mu_{2}\left(g_{1}\left(z_{1}^{n}(x, 1, t)\right), w_{i}\right) \\
& +\left(v_{t t}^{n} \widetilde{w}_{i}\right)_{\Gamma_{1}}+\left(\nabla_{T} v^{n}, \nabla_{T} \widetilde{w}_{i}\right) \Gamma_{1}+\mu_{1}^{\prime}\left(g_{2}\left(v_{t}^{n}\right), \widetilde{w}_{i}\right)_{\Gamma_{1}} \\
& +\mu_{2}^{\prime}\left(g_{2}\left(z_{2}^{n}(x, 1, t)\right), \widetilde{w}_{i}\right)_{\Gamma_{1}}=0, \\
& \quad \int_{\Omega} \int_{0}^{1}\left(\tau z_{1_{t}}^{n}+z_{1_{\rho}}^{n}\right) \phi_{i} d \rho d x=0, \quad 1 \leq n, \tag{17}\\
& \\
& \quad 1 \leq i \leq n \quad \text { (16) }
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Gamma_{1}} \int_{0}^{1}\left(\tau z_{2_{t}}^{n}+z_{2_{\rho}}^{n}\right) \widetilde{\phi}_{i} d \rho d \sigma=0, \quad 1 \leq i \leq n \tag{18}
\end{equation*}
$$

Proof of Theorem

with initial data:

$$
\left\{\begin{array}{ccc}
u^{n}(0)=u_{0}^{n}=\sum_{i=1}^{n} a_{i}^{n}(0) w_{i} \rightarrow u_{0} & \text { in } & \left(H^{2}(\Omega) \cap H_{\Gamma_{0}}^{1}(\Omega)\right), \\
u_{t}^{n}(0)=u_{1}^{n}=\sum_{i=1}^{n}\left(a_{i}^{n}\right) t(0) w_{i} \rightarrow u_{1} & \text { in } & H_{\Gamma_{0}}^{1}(\Omega), \\
v^{n}(0)=v_{0}^{n}=\sum_{i=1}^{n} b_{i}^{n}(0) \widetilde{w}_{i} \rightarrow v_{0} & \text { in } & \left(H^{2}\left(\Gamma_{1}\right) \cap H^{1}\left(\Gamma_{1}\right)\right), \\
v_{t}^{n}(0)=v_{1}^{n}=\sum_{i=1}^{n}\left(b_{i}^{n}\right)_{t}(0) \widetilde{w}_{i} \rightarrow v_{1} & \text { in } & H^{1}\left(\Gamma_{1}\right), \\
z_{1}^{n}(\rho, 0)=z_{0_{1}}^{n}=\sum_{i=1}^{n} c_{i}^{n}(0) \phi_{i} \rightarrow f_{0_{1}} & \text { in } & H_{\Gamma_{0}}^{1}\left(\Omega ; H^{1}(0,1)\right), \\
z_{2}^{n}(\rho, 0)=z_{0_{2}}^{n}=\sum_{i=1}^{n} d_{i}^{n}(0) \widetilde{\phi}_{i} \rightarrow f_{0_{2}} & \text { in } & H^{1}\left(\Gamma_{1} ; H^{1}(0,1)\right) .
\end{array}\right.
$$

Proof of Theorem

The local existence of solutions of the problem (16)-(19) is standard by the theory of ordinary differential equations, we can conclude that there is a $t_{n}>0$ such that in $\left[0, t_{n}\right]$, the problem (16)-(19) has a unique local solution which can be extended to a maximal interval $[0, T]$ (with $0<T \leq \infty$) by Zorn's lemma, since the nonlinear terms in (16) are locally Lipschitz continuous. We can utilize a standard compactness argument for the limiting procedure and it suffices to derive some a priori estimates for $\left(u^{n}, v^{n}, z_{1}^{n}, z_{2}^{n}\right)$.

Proof of Theorem

First estimate

We obtain, for any $T>0$

$$
\begin{gather*}
u^{n} \text { is bounded in } L^{\infty}\left(0, T ; H_{\Gamma_{0}}^{1}(\Omega)\right), \tag{20}\\
v^{n} \text { is bounded in } L^{\infty}\left(0, T ; H^{1}\left(\Gamma_{1}\right)\right), \tag{21}\\
u_{t}^{n} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{22}\\
v_{t}^{n} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right), \tag{23}\\
u_{t}^{n} g_{1}\left(u_{t}^{n}\right) \text { is bounded in } L^{1}(\Omega \times(0, T)), \tag{24}\\
v_{t}^{n} g_{2}\left(v_{t}^{n}\right) \text { is bounded in } L^{1}\left(\Gamma_{1} \times(0, T)\right), \tag{25}
\end{gather*}
$$

Proof of Theorem

First estimate

$\left.G_{1}\left(z_{1}^{n}\right)\right)$ is bounded in $L^{\infty}\left(0, T ; L^{1}(\Omega \times(0,1))\right)$,
$\left.G_{2}\left(z_{2}^{n}\right)\right)$ is bounded in $L^{\infty}\left(0, T ; L^{1}\left(\Gamma_{1} \times(0,1)\right)\right)$,
$z_{1}^{n}(x, 1, t) g_{1}\left(z_{1}^{n}(x, 1, t)\right)$ is bounded in $L^{1}(\Omega \times(0, T))$,
$z_{2}^{n}(x, 1, t) g_{2}\left(z_{2}^{n}(x, 1, t)\right)$ is bounded in $L^{1}\left(\Gamma_{1} \times(0, T)\right)$.

Proof of Theorem

Second estimate

We obtain

$$
\begin{equation*}
u_{t}^{n} \text { is bounded in } L^{\infty}\left(0, T ; H_{\Gamma_{0}}^{1}(\Omega)\right), \tag{30}
\end{equation*}
$$

v_{t}^{n} is bounded in $L^{\infty}\left(0, T ; H^{1}\left(\Gamma_{1}\right)\right)$,
$u_{t t}^{n}$ is bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$,
$v_{t t}^{n}$ is bounded in $L^{\infty}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right)$,

Proof of Theorem

Second estimate

$$
\begin{align*}
& z_{1_{t}}^{n} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega \times(0,1))\right. \tag{34}\\
& z_{2_{t}}^{n} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}\left(\Gamma_{1} \times(0,1)\right) .\right. \tag{35}
\end{align*}
$$

Proof of Theorem

Estimate for z_{1}^{n} and z_{2}^{n}
We obtain

$$
\begin{align*}
& z_{1}^{n} \text { is bounded in } L^{\infty}\left(0, T ; H_{\Gamma_{0}}^{1}\left(\Omega ; L^{2}(0,1)\right)\right), \tag{36}\\
& z_{2}^{n} \text { is bounded in } L^{\infty}\left(0, T ; H^{1}\left(\Gamma_{1} ; L^{2}(0,1)\right)\right) . \tag{37}
\end{align*}
$$

Proof of Theorem

The passing to the limit

Applying Dunford-Petti's theorem, we conclude from (20)-(37) that there exists subsequences of $\left(u^{n}\right)_{n},\left(v^{n}\right)_{n},\left(z_{1}^{n}\right)_{n}$ and $\left(z_{2}^{n}\right)_{n}$ which we still denote by $\left(u^{n}\right)_{n},\left(v^{n}\right)_{n},\left(z_{1}^{n}\right)_{n}$ and $\left(z_{2}^{n}\right)_{n}$ respectively, such that

$$
\begin{array}{r}
\left(u^{n}, u_{t}^{n}, u_{t t}^{n}\right) \rightharpoonup\left(u, u_{t}, u_{t t}\right) \text { weakly-star in } L^{\infty}\left(0, T ;\left[H_{\Gamma_{0}}^{1}(\Omega)\right]^{2} \times L^{2}(\Omega)\right) \\
(38) \\
\left(v^{n}, v_{t}^{n}, v_{t t}^{n}\right) \rightharpoonup\left(v, v_{t}, v_{t t}\right) \text { weakly-star in } L^{\infty}\left(0, T ;\left[H^{1}\left(\Gamma_{1}\right)\right]^{2} \times L^{2}\left(\Gamma_{1}\right)\right) \tag{39}
\end{array}
$$

$$
g_{1}\left(u_{t}^{n}\right) \rightharpoonup \chi_{1} \text { weakly-star in } L^{2}((0, T) \times \Omega)
$$

$$
g_{2}\left(v_{t}^{n}\right) \rightharpoonup \chi_{2} \text { weakly-star in } L^{2}\left((0, T) \times \Gamma_{1}\right)
$$

Proof of Theorem

The passing to the limit

$$
\begin{gather*}
z_{1}^{n} \rightharpoonup z_{1} \text { weakly-star in } L^{\infty}\left(0, T ; H_{\Gamma_{0}}^{1}\left(\Omega ; L^{2}(0,1)\right)\right), \tag{40}\\
z_{2}^{n} \rightharpoonup z_{2} \text { weakly-star in } L^{\infty}\left(0, T ; H^{1}\left(\Gamma_{1} ; L^{2}(0,1)\right)\right), \tag{41}\\
z_{1_{t}}^{n} \rightharpoonup z_{1_{t}} \text { weakly-star in } L^{\infty}\left(0, T ; L^{2}(\Omega \times(0,1))\right), \tag{42}\\
z_{2_{t}}^{n} \rightharpoonup z_{2_{t}}^{n} \text { weakly-star in } L^{\infty}\left(0, T ; L^{2}\left(\Gamma_{1} \times(0,1)\right)\right), \tag{43}\\
g_{1}\left(z_{1}^{n}(x, 1, t)\right) \rightharpoonup \Psi_{1} \text { weakly-star in } L^{2}((0, T) \times \Omega), \\
g_{2}\left(z_{2}^{n}(x, 1, t)\right) \rightharpoonup \Psi_{2} \text { weakly-star in } L^{2}\left((0, T) \times \Gamma_{1}\right) .
\end{gather*}
$$

Proof of Theorem

The passing to the limit
Next, thanks to Aubin-Lions's theorem, we arrive at

$$
\begin{gather*}
u^{n} \rightarrow u \text { strongly in } L^{2}\left(0, T ; L^{2}(\Omega)\right), \tag{44}\\
u_{t}^{n} \rightarrow u_{t} \text { strongly in } L^{2}\left(0, T ; L^{2}(\Omega)\right), \tag{45}\\
v^{n} \rightarrow v \text { strongly in } L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right), \tag{46}\\
v_{t}^{n} \rightarrow v_{t} \text { strongly in } L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right), \tag{47}\\
z_{1}^{n} \rightarrow z_{1} \text { strongly in } L^{2}(\Omega \times(0,1) \times(0, T)), \tag{48}\\
z_{2}^{n} \rightarrow z_{2} \text { strongly in } L^{2}\left(\Gamma_{1} \times(0,1) \times(0, T)\right) \tag{49}
\end{gather*}
$$

Proof of Theorem

Analysis of the nonlinear terms

We obtain

$$
\left\{\begin{array}{l}
g_{1}\left(u_{t}^{n}\right) \rightharpoonup g_{1}\left(u_{t}\right) \text { weakly in } L^{2}(\Omega \times(0, T)), \tag{50}\\
g_{2}\left(v_{t}^{n}\right) \rightharpoonup g_{2}\left(v_{t}\right) \text { weakly in } L^{2}\left(\Gamma_{1} \times(0, T)\right)
\end{array}\right.
$$

And

$$
\left\{\begin{array}{l}
g_{1}\left(z_{1}^{n}(x, 1, t)\right) \rightharpoonup g_{1}\left(z_{1}(x, 1, t)\right) \text { weakly in } L^{2}(\Omega \times(0, T)), \\
g_{2}\left(z_{2}^{n}(x, 1, t)\right) \rightharpoonup g_{2}\left(z_{2}(x, 1, t)\right) \text { weakly in } L^{2}\left(\Gamma_{1} \times(0, T)\right)
\end{array}\right.
$$

Proof of Theorem

Uniqueness of solution

By reasoning by absurd, i.e., supposing that there exist two solutions (u, v, z_{1}, z_{2}) and ($\tilde{u}, \tilde{v}, \tilde{z}_{1}, \tilde{z}_{2}$) of problem (6), with $\left(U, V, Z_{1}, Z_{2}\right)=\left(u, v, z_{1}, z_{2}\right)-\left(\tilde{u}, \tilde{v}, \tilde{z}_{1}, \tilde{z}_{2}\right)$.
Then, we will arrive at $\left(U, V, Z_{1}, Z_{2}\right)=0$, hence the uniqueness. This finish the proof of Theorem.

Conclusion

Conclusion

We studied the existence and uniqueness of a solution thanks to the Faedo Galerkin's approximation, of a coupled wave/Wentzell system, in the presence of two nonlinear frictional dampings and two nonlinear delay terms, localized inside Ω and on the part Γ_{1} of its boundary.

References

嗇 Lemrabet. K., Etude de divers problèmes aux limites de Ventcel d'origine physique ou mécanique dans des domaines non réguliers, USTHB, Alger, 1987.

䍰 Nicaise. S., Pignotti. C., Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM Journal on Control and Optimization, (2006), 45: 1561-1585.

Rentzell (Ventcel). A. D., On boundary conditions for multidimentional diffusion processes, Theory of Probability and Its Applications, 4 (1959), 164-177.

Thank you for your attention

