
Citation: Choudhary, M.A. Some

Basic Inequalities on Riemannian

Manifolds Equipped with Metallic

Structure. Comput. Sci. Math. Forum

2023, 1, 0. https://doi.org/

Academic Editor: Firstname

Lastname

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Some Basic Inequalities on Riemannian Manifolds Equipped
with Metallic Structure †

Majid Ali Choudhary

Department of Mathematics, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India;
majid_alichoudhary@yahoo.co.in
† This paper is an extended version of our paper published in Presented at the 1st International Online

Conference on Mathematics and Applications; Available online: https://iocma2023.sciforum.net/.

Abstract: We construct sharp inequality for submanifolds of metallic Riemannian space forms
using generalised normalised δ-Casorati curvatures. In the same ambient space, we also derive the
generalised Wintgen inequality for some submanifolds. The equality cases are also covered.
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1. Introduction

There has been significant work in the field of golden differential geometry since
M. Crasmareanu and C. E. Hretcanu established the golden structure on a Riemannian
manifold in 2008 [1]. They also introduced the concept of metallic structure in 2013 as a
generalisation of golden structure defined on Riemannian manifolds [2]. Several curvature-
related properties of metallic Riemannian manifolds have recently been explored in [3,4].

By generating an obvious inequality, B. Y. Chen developed Chen’s invariants (other-
wise known as δ-invariants) as a tool to examine the link between intrinsic and extrinsic
invariants. The research of Chen invariants and Chen-type inequalities in various submani-
folds for numerous ambient spaces ([5–7], etc.) was made possible by this advancement in
the field of differential geometry.

In a significant movement, F. Casorati [8] substituted the conventional Gauss curva-
ture with the Casorati curvature, which set the groundwork for the definition of optimal
inequalities for submanifolds in various ambient spaces using Casorati curvatures. Many
researchers have used Casorati curvatures extensively to find the best inequalities for
submanifolds in various ambient spaces [9–11].

Now take a look at Wintgen inequality, which is a sharp geometric inequality involving
intrinsic and extrinsic invariants for surfaceM2 in E4. P. Wintgen [12] is credited with
finding it using the following equation

||H||2 ≥ K+ |K⊥|.

K and K⊥ are used to represent the Gauss curvature and normal curvature of M2, re-
spectively, whereasH is employed for the mean curvature. Also, when the ellipse of the
surface’s curvature in Euclidean space looks to be a circle, the equality in the connection
mentioned above holds.

The aforementioned inequality was independently researched and improved in the
years that followed for surfaces with arbitrary codimension in a real space with constant
sectional curvature as

||H||2 + c ≥ K+ |K⊥|.
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P. J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken [13] proposed the generalised
Wintgen inequality as a natural generalisation of the aforementioned inequality, and they
demonstrated that the following inequality is satisfied at every point of submanifoldMn

of real space formMn+m
(c) of constant sectional curvature c

ρ ≤ ||H||2 − ρ⊥ + c,

where, correspondingly, ρ stands for the normalised scalar curvature and ρ⊥ for the nor-
malised normal scalar curvature of M. The DDVV conjecture and the normal scalar
curvature conjecture are other names for this hypothesis. It is important to keep in mind
that the submanifolds for which the equality in the previous relation holds are referred
to as Wintgen ideal submanifolds (see [14]). Although J. Q. Ge, Z. Z. Tang [15], and Z.
Lu [16] demonstrated the general case of the DDVV conjecture, respectively. For many
submanifolds in various ambient spaces, there has been extensive research and extension
of the generalised Wintgen inequality [17–20].

We concentrate this note to proving sharp inequalities involving generalised nor-
malised δ-Casorati curvatures for submanifolds of metallic Riemannian space forms, draw-
ing inspiration from the aforementioned findings. Moreover, generalised Wintgen inequali-
ties for submanifolds form in the same ambient space, and the equality instances are also
discussed.

2. Main Results

Theorem 1. LetM be an n-dimensional slant submanifold of an m-dimensional locally metallic
space form (M =M1(c1)×M2(c2), g, ϕ). Then

(i) the generalized normalized δ-Casorati curvature δc(r; n− 1) satisfies

ρ ≤ δc(r; n− 1)
n(n− 1)

+
1
2

A1 +
1
2

A2 (1)

for any real number r, 0 < r < n(n− 1);
(ii) the generalized normalized δ-Casorati curvature δ̂c(r; n− 1) satisfies

ρ ≤ δ̂c(r; n− 1)
n(n− 1)

+
1
2

A1 +
1
2

A2 (2)

r > n(n− 1);

where
A1 = 1

(p2+4q) (c1 + c2)
{

p2 + 2q + 2
n(n−1) [tr

2 ϕ − (p · trT + nq) cos2 θ] − 2p
n trϕ

}
,

A2 = 1√
p2+4q

(c1 − c2)
( 2

n trϕ− p
)
.

In addition, the Equations (1) and (2) also hold for equality if and only if for some orthonormal
frame {E1, . . . , En, En+1, . . . , Em}, the shape operators Ar, r ∈ {n + 1, . . . , m} take the following
forms:

Sn+1 =



f 0 0 . . . 0 0
0 f 0 . . . 0 0
0 0 f . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . f 0
0 0 0 . . . 0 n(n−1)

r f


, Sn+2 = · · · = Sm = 0. (3)
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Theorem 2. LetM represent a θ-slant submanifold of dimension n in a locally metallic space form
(M =M1(c1)×M2(c2), g, ϕ). Then, we have

ρN ≤ ||H||2 − 2ρ + A1 + A2. (4)

Additionally, the Equation (4) holds for equality if and only if for some orthonormal frame
{e1, . . . , en, en+1, . . . , em}, the shape operator S take the following form:

Sn+1 =



a d 0 . . . 0 0
d a 0 . . . 0 0
0 0 a . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . a 0
0 0 0 . . . 0 a


, (5)

Sn+2 =



b + d 0 0 . . . 0 0
0 b− d 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 b


, (6)

Sn+3 =



c 0 0 . . . 0 0
0 c 0 . . . 0 0
0 0 c . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . c 0
0 0 0 . . . 0 c


, Sn+4 = · · · = Sm = 0, (7)

where a, b, c and d are real functions onM.

Remark 1. We can also derive similar inequalities for Riemannian manifolds equipped with the
golden structure, the silver structure, the bronze structure, the subtle structure, the copper structure,
the nickel structure etc.
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