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Problem Overview

Why predict the stock market?

Investment

Maximize profits

Predict the economy

Implement suitable economic policies

Challenges

Stochastic nature

Multiple factors

Market Complexity

Data Quality
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Related Works

Literature reviews

The literature review examined studies on stock market prediction using Machine
Learning (ML) models. It concluded that Deep Learning (DL) was the most com-
monly utilized model for forecasting stock price trends [11, 13].

In the state of the art, the articles provide a comparison of some of them:
b Al-Nefaie et al. [12] used LSTM and MLP models to predict fluctuations in the Saudi

stock market. Their research showed that the correlation coefficient between the two
models was more significant than 0.995, and the LSTM model was more accurate and
had the best fit.

b In [3], the authors evaluated the performance of models such as ARIMA, XGBoost,
and LSTM in forecasting stock market trends using various measures such as MSE,
MAE, RMSE, and MAPE. Their study concluded that XGBoost outperformed the
other models.
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Research Purpose

Aim of the study

The main objective of this investigation is to improve the Grid Search (GS) optimization
algorithm by optimizing the hyperparameters of ML models.

The paper aims to contribute to the stock market prediction field by improving the performance
of ML models through hyperparameter optimization.

Table 1: Some previous work using ML models for stock market forecasting.

Reference Location Year Benchmark Model MAPE (%) RMSE R2

[7] Irlande 2019 LSTM, SVR, MA 1.03 347.46 0.830
[10] China 2020 MLP, CNN, RNN, LSTM, CNN-RNN — 39.688 0.965
[3] American 2022 ARIMA, XGBoost, LSTM 3.8 6.101 0.961

This study Morocco 2023 SVR, XGBoost, MLP, LSTM 0.368 3.993 0.989
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Flowchart of this research
We describe a methodology for modelling and forecasting the closing price of MSI 20 using
Python in an empirical study. The main steps of the process are :

Input Multivariate Time Series
(Open, High, Low, Close)

 
Output 

Data 
Preprocessing

Test set

Training set

Forecast closing 
price

Stock price  
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Trained 
models

Training models
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Performance 
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(Train, test set)

Final Learning 
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Non

Store best parameters 
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Data : MOROCCO STOCK INDEX 20 (MSI 20)

 We chose MSI 20, a new index of the 20 most liquid companies listed on the CSE (Maroc
Telecom, Attijariwafa Bank, BCP, LafargeHolcim Maroc, Addoha...etc.)

 The MSI 20 is a price index that takes into account market capitalization and captures
83% of the capitalization of Casablanca and 87% of the total trading volume, it covers
13 sectors of the economy.

 This research uses a dataset with 4 variables (Open, Low, High, and Close prices) and
541 daily observations, spanning from 18 December 2020 to 09 February 2023. The focus is
on using the stock prices of the MSI 20 index for modelling and prediction, as it reflects all
daily activities of the index.

Date Open High Low Close

2020-12-18 946.25 950.56 943.85 944.58
...

...
...

...
...

2023-02-09 860.11 869.08 858.06 865.69

Statistics Open High Low Close

Count 541 541 541 541
Mean 988.86 993.28 984.91 988.84
Std 78.01 77.05 78.35 78.15
Min 775.38 797.01 775.38 775.38
Max 1140.69 1142.56 1135.86 1140.69

OUKHOUYA. H, EL HIMDI. K (LMSA, FSR, UM5) Methodology Materials and Methods

https://github.com/oukhouya62
https://iocma2023.sciforum.net/


 oukhouya62 9/25 IOCMA 2023

Preprocessing

To train model parameters, we use prices as Input = (Open, High, Low, and Closing prices) of
length N,

X = {X (1)
t , X (2)

t , X (3)
t , t = 1, 2, . . . , N},

For the output with a single observation sequence, we use only closing price,

Y = Yt , t = 1, 2, . . . , N

The data set was divided into 90% of the observations used for training and 10% for model
evaluation during testing. In this case, we normalized using a min-max scale, which scales all
variables to a range of [0, 1]:

X̃t = Xt − Xmin
t

Xmax
t − Xmin

t
(1)
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SVR model for financial time series

The SVR model, a new financial time series prediction method, is used to address the challenges
of nonlinear regression. Mathematically, this can be explained by the equation shown below:

Yt = WXt + b =
N∑

i=1
wixit + bi ,

Non−linear
↪−−−−−−→

mapping
Yt =

∑
k

βkykK(xk , x) + b (2)

The most commonly used kernels include linear, gaussian, and polynomial functions [14].
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XGBoost model for financial time series

XGBoost is an ML model used for stock market time series forecasting that uses a set of decision
trees [1]. A gradient descent algorithm guides the process of preparing subsequent trees to
minimize the loss function of the last tree [20].

LT (F (xi)) =
N∑

i=1
χ(yi , FT (xi)) +

T∑
t=1

Π(ft), (3)

where χ(·) is a loss function specified that quantifies the deviations of the predicted and actual
target values, Π(·) represents the term of regularization, which penalizes the model complexity
[18].
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MLP model for financial time series

The MLP is a frequently used ANN consisting of three layers of neurons: The inputs (xi) are
multiplied by their weights (wi), and the resulting products are combined. This sum and a bias
term (b) are fed into an activation function to produce the neuron’s output (Yt) [5]. Equation
(2) can be used to express this process in mathematical words:

ζt =
N∑

i=1
wixit + b =⇒ Yt = σ(ζt), (4)

σ(ζt) = 1
1 + e−ζt

(5)

where σ(·), the activation function, is frequently employed as a function, either continuous
or discontinuous, that maps real numbers to a specific interval. Alternatively, the sigmoidal
activation function can also be utilized [12].
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LSTM model for financial time series

LSTM models are RNNs that excel at learning and retaining long-term dependencies, making
them successful in various applications such as financial time series forecasting. The principle
of an LSTM cell consists of the following four equations [17]:

Forget gate:
ft = δ(Wef (Xt , ht−1) + Wcf Ct−1 + bf ), (6)

Input gate:
it = δ(Wki(Xt , ht−1, Ct−1) + bi), k = x , h, c (7)

Memory cell:
Ct = ftCt−1 + it tanh(Wlc(Xt , ht−1) + bc), (8)

Output gate:
ot = δ(Wji(Xt , ht−1, Ct−1) + bo), j = x , h, c (9)
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The GS hyper-parameter sets for the ML models

ML Models Parameters Type Search Space

Epsilon in the SVR loss function (epsilon) Continuous [0.0001,0.001,0.01]
Regularization parameter (C) Discrete [100,1000,1100]

SVR The kernel type (kernel) Categorical [’linear’, ’poly’, ’rbf’, ’sigmoid’]
Kernel coefficient (gamma) Continuous [1e-5,1e-4,1e-3]
Tolerance for stopping criterion (tol) Continuous default=1e-3
# of regression trees (n_estimators) Discrete [100,200,1000]
Maximum regression tree depth (max_depth) Discrete [5,10,15,20]
Boosting the rate of learning (learning_rate) Continuous [0.01, 0.06, 0.09]

XGBoost Minimum reduction of loss (gamma) Continuous [0.001,0.01,0.1]
Regularization term L1 on weights (reg_alpha) Continuous [ 0.001,0.01,0.1]
Regularization term L2 on weights (reg_lambda) Continuous [ 0.001,0.01,0.1]
Objective learning function (objective) Categorical [’reg:squarederror’,’reg:linear’]
# of neurons in the ith hidden layer (hidden_layer_sizes) Discrete [(50,50,50), (50,100,50), (100,)]
Activation function for hidden layer (activation) Categorical [’relu’,’tanh’,’logistic’,’identity’]

MLP The solver for weight optimization (solver) Categorical [’sgd’,’adam’,’lbfgs’]
Strength of the regularization term L2 (alpha) Continuous [0.001, 0.01, 0.1]
Learning rate for weight update program (learning_rate) Categorical [’constant’,’invscaling’,’adaptive’]
# of epochs to train the model (epochs) Discrete [20,90,100]
# of hidden layer Discrete [1,2,3,4]
The function that tries to optimize (optimizer) Categorical [’adam’,’rmsprop’,’sgd’]

LSTM Learning rate (learning_rate) Continuous [0.1, 0.01, 0.001]
Activation functions (activation) Categorical [’tanh’,’sigmoid’,’relu’]
# of hidden layer neurons (neurons_1, neurons_2) Discrete [150, 250, 350], [200, 200, 300],
Loss functions to be minimized during model training (loss) Categorical [’mae’,’mse’,’mape’]
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Formulas for model performance measures.

We report and compare the performance of the SVR, XGBoost, MLP, and LSTM models for
forecasting the MSI 20 stock market. Various evaluation measures are obtained to assess the
models’ accuracy, such as ME, MPE, MSE, MAE, RMSE, MAPE, and R2 scores.

Metrics ME MAE MSE MPE (%) MAPE (%) RMSE R2 (%)

Formulas 1
n

n∑
t=1

εit
1
n

n∑
t=1

|εit | 1
n

n∑
t=1

ε2
it

100
n

∑n
t=1

εit
yt

100
n

∑n
t=1 | εit

yt
|

√
MSE 1 − nMSE∑n

t=1
(yt −y t )

Let ŷit be the forecast of model i in time t, yt is the real value in time t, y t is the mean value,
and n is the length of the set time series (i.e., training & test sets). The error for model i at
time t is defined as εit = yt − ŷit .
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Forecast of MSI 20 stock price
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Figure 1: MSI 20 stock price prediction: results of LSTM, SVR, MLP, and XGBoost models.
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The performance analysis metrics of each model

Models SVR XGBoost MLP LSTM

Error measure Training Test Training Test Training Test Training Test

ME 0.0899 0.674 2.277 0.558 5.406e-6 0.883 2.339 1.4
MAE 2.058 3.092 2.460 9.165 2.059 3.101 3.554 5.065

RMSE 2.646 3.993 3.141 13.515 2.642 4.018 4.496 6.322
MPE (%) 9.134e-3 0.082 0.226 0.116 7.603e-4 0.107 0.164 0.234

MAPE (%) 0.207 0.368 0.244 1.095 0.207 0.370 0.357 0.603
MSE 7.003 15.941 9.864 182.651 6.978 16.286 20.215 39.97
R2 0.998 0.989 0.997 0.882 0.998 0.989 0.995 0.974

Comparison and discussion
Based on the results presented in the table above and Figure 1, it can be concluded that the
SVR model followed by MLP models had the best performance for forecasting MSI 20 compared
to other models.

OUKHOUYA. H, EL HIMDI. K (LMSA, FSR, UM5) Results and Discussion Results of LSTM, SVR, MLP, and XGBoost models

https://github.com/oukhouya62
https://iocma2023.sciforum.net/


 oukhouya62 19/25 IOCMA 2023

Roadmap

1 Introduction
Problem Overview
Literature reviews

2 Methodology
Materials and Methods
Data pre-processing
SVR, XGBoost, MLP, and LSTM models
Optimization of the GS

3 Results and Discussion
Performance measures
Results of LSTM, SVR, MLP, and XGBoost models

4 Conclusion

5 Bibliography

OUKHOUYA. H, EL HIMDI. K (LMSA, FSR, UM5) Conclusion

https://github.com/oukhouya62
https://iocma2023.sciforum.net/


 oukhouya62 20/25 IOCMA 2023

Conclusions, Limitations
Conclusion

The results showed that SVR outperformed the other mod-
els with lower errors and higher accuracy 98.9%.

Limitations

 The XGBoost model are not robust.
 The time-consuming GS algorithm.

Future Research

� Focus on improving the performance of XGBoost model.
� Exploring the potential of other models, such as CNN-

LSTM, for stock market forecasting.
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