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Abstract: Presented in this paper is a trigonometrically fitted scheme based on a class of improved1

hybrid method for the numerical integration of oscillatory problems. The trigonometric conditions2

are constructed through which a third algebraic order scheme is derived. Numerical properties3

of the scheme are analysed. Numerical experiment is conducted to validate the scheme. Results4

obtained reveal the superiority of the scheme over its equals in the literature5

Keywords: oscillatory solution; numerical scheme; trigonometrically fitted, hybrid method;6

trigonometric conditions; oscillatory problem.7

1. Introduction8

Our interest in this paper is on the solution of a special class of second order
ordinary differential equations (ODEs) whose solution exhibits oscillatory behaviors. In
short, the equation together with its boundary conditions (initial value problem (IVP))
takes the following form:

y′′(x) = f (x, y(x)), y(x0) = y0, y′(x0) = y′0. (1)

It is a special case of second ODEs because the right-hand-side of the main equation is9

independent of y′ component. Over the years, researchers’ interest on this particular10

problem (1) has grown. This is largely due to its applicability in a number of areas in11

applied sciences including engineering, celestial mechanics, orbital mechanics, chemical12

kinetics, astrophysics, chemistry, physics and elsewhere [1–12]. Unfortunately, as impor-13

tant as the problem (1), only a few of them could be solved analytically. Hence, the need14

for numerical schemes.15

Traditional numerical schemes like Runge-Kutta methods, Runge-Kutta-Nyström16

methods, linear multistep method e.t.c for solving second order ODEs could solved (1)17

only with little accuracy and efficiency due to the behaviours of the solution. Research18

has shown that an adapted form of the traditional schemes could solve (1) with reduced19

error and better efficiency [5].20

Recently, [11,12] introduced in the literature a new numerical scheme that proved21

to be more promising in tackling (1). The methods are developed to be implemented in22

constant coefficients fashion. The method could perform better if adapted to specifically23

handle (1). This is the main motivation of this paper.24

The remaining part of the paper is organized as follows: in Section 2, the proposed25

scheme is derived; results of numerical experiment are presented in Section 3; discussion26

of the results is presented in Section 4 and finally, conclusion is given in Section 5.27
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2. The Scheme28

The general form of improved hybrid method is29

yn+1 =
3
2

yn −
1
2

yn−2 + h2
s

∑
i=1

bi f (xn + cih, Yi),

Yi =
1
2
(2 + ci)yn −

1
2

ciyn−2 + h2
s

∑
i=j

ai,j f (xn + cjh, Yj), (2)

where yn+1 and yn−2 are approximations for y(xn+1) and y(xn−2), respectively. ai,j, bi30

and ci are coefficients of the method and they are real numbers. i = 1, ..., s and i > j,31

because the method is explicit. The coefficients can be summarized as follows:32

Table 1. General coefficients of the scheme.

-2 0
0 0 0
c3 a31 a32 0
...

...
...

...
...

cm am1 am2 · · · amm−1 0
b1 b2 · · · bm−1 bm

2.1. Order condition of the scheme33

Algebraic order condition of a method or scheme is a set of equations that causes34

the successive terms in the Taylor series expansion of local truncation error of the method35

to vanish. The order conditions of the scheme as derived and presented in [11,12] can be36

seen in the table below:37

Table 2. Order Conditions

t ρ(t) Order condition
τ 0 -
τ1 1 -
τ2 2 ∑ bi =

3
2

t3,1 3 ∑ bici = − 1
2

t4,1 4 ∑ bic2
i = 3

4
t4,2 ∑ biai,j = − 1

8
t5,1 5 ∑ bic3

i = − 3
4

t5,2 ∑ biciai,j =
3
8

t5,3 ∑ biai,jcj =
5

24
t6,1 6 ∑ bic4

i = 11
10

t6,2 ∑ bic2
i ai,j =

11
20

t6,3 ∑ biciai,jcj =
41
60

t6,4 ∑ biai,jai,k = 3
16

t6,5 ∑ biai,jc2
j = − 87

360
t6,6 ∑ biai,jaj,k = 21

240

2.2. Trigonometric Conditions38

Suppose we apply the scheme (2) to solve problem (1) whose solution is a linear
combination of

{
xj exp (αx), xj exp (−αx)

}
, exactly, where α is real or complex. But here,
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we are interested in the complex value. Assuming the solution is exp (iαx), where i is
imaginary. Then the trigonometric conditions are obtained as follows:

cos(z)− 3
2
+

1
2

cos(2 z) + z2
s

∑
k=1

bk cos(ckz) = 0,

sin(z)− 1
2

sin(2 z) + z2
s

∑
k=1

bk sin(ckz) = 0,

cos(ciz)− 1 − 1
2

ci +
1
2

ci cos(2 z) + z2
i−1

∑
j=1

aij cos
(
cjz

)
= 0,

sin(ciz)−
1
2

ci sin(z) + z2
i−1

∑
j=1

aij sin
(
cjz

)
= 0.

Where z = αh.39

2.3. Derivation of the proposed scheme40

The proposed scheme is based on the "Three-step third order hybrid method"41

presented in [11]:42

Table 3. Coefficients of ThHM3

-2 0
0 0 0

−3 5
4

1
4 0

3
8

29
24 − 1

12

Obviously, s = 3 from Table (3). Now, substitute same in the trig. conditions while
holding all the internal coefficients (ci and aij) constant, we obtain

cos(z) =
3
2
− 1

2
cos(2 z)− z2(b1 cos(2 z) + b2 + b3 cos(3 z)),

sin(z) =
1
2

sin(2 z)− z2(−b1 sin(2 z)− b3 sin(3 z)).

That is a system of two equations in three unknown parameters, implying one degree of
freedom. The one free parameter could be taken from Table (3) above, but we don’t want
any of the update stage coefficients to be constant. Hence, we choose one additional
equation to augment the number of equations to be solved. The variable coefficients are
obtained as follows:

b1 = −3
4

sin(3 z)z2 + 12 sin(z) cos(z)− 12 sin(z)
z2(9 sin(2 z)− 4 sin(3 z))

,

b2 =
1
4

N1

z2(9 sin(2 z)− 4 sin(3 z))
,

b3 =
1
4

3 sin(2 z)z2 + 16 sin(z) cos(z)− 16 sin(z)
z2(9 sin(2 z)− 4 sin(3 z))

,

where

N1 =

− 3 sin(2 z) cos(3 z)z2 + 3 cos(2 z)z2 sin(3 z) + 36 sin(z) cos(z) cos(2 z)−
16 sin(z) cos(z) cos(3 z)− 36 sin(z) cos(2 z) + 16 sin(z) cos(3 z)−
36 sin(2 z) cos(z) + 16 cos(z) sin(3 z)− 18 cos(2 z) sin(2 z) + 8 cos(2 z) sin(3 z)+

54 sin(2 z)− 24 sin(3 z).
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But observe that as z → 0 there would be heavy cancellations. So, Taylor expansion of
the coefficients would be used. The corresponding values after the expansion are:

b1 =
3
8
+

39 z4

320
− 2627 z6

16128
+ O

(
z8
)

,

b2 =
29
24

+
3 z4

320
+

26309 z6

725760
+ O

(
z8
)

,

b3 = − 1
12

− 13 z4

240
+

2627 z6

36288
+ O

(
z8
)

.

2.4. Confirmation of order of convergence43

The order of the scheme can be confirmed by substituting the coefficients back to
algebraic order conditions to check the conditions that are recovered.

∑ bi =
3
2
+

37 z4

480
− 243 z6

4480
+ O

(
z8
)

∑ bici = −1
2
− 13 z4

160
+

2627 z6

24192
+ O

(
z8
)

∑ bic2
i =

3
4
+ O

(
z14

)
∑ biai,j = −1

8
− 13 z4

160
+

2627 z6

24192
+ O

(
z8
)

.

It can be seen that the order conditions are recovered as z approaches zero. Hence, by44

the order of convergence stated in [11], the scheme is of order three.45

3. Numerical Results46

In this section, the proposed scheme is validated by solving a few examples of
problems with known exact solutions. The problems are:

Problem 1 (Inhomogeneous Problem)

d2y(x)
dx2 = −y(x) + x, y(0) = 1, y

′
(0) = 2.

Exact solution: y(x) = sin(x) + cos(x) + x.

Source: [1,11,12].x ∈ [0, 100]

Problem 2 (Duffing Problem)

y′′ + y + y3 = F cos(vx), y(0) = 0.200426728067,

y′(0) = 0. where F = 0.002 and v = 1.01.

Exact solution: y(x) =
4

∑
i=0

υ2i+1 cos[(2i + 1)vx],

where υ1 = 0.200179477536, υ3 = 0.246946143 × 10−3,

υ5 = 0.304014 × 10−6, υ7 = 0.374 × 10−9, and

υ9 < 10−12 α = 1.

Source: [11,12].x ∈ [0, 100]
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Table 4. Maximum Error for Problem 1

h TThMH ThHM

0.125 1.09000000 × 10−05 9.14000000 × 10−05

0.0625 6.81778300 × 10−07 5.74000000 × 10−06

0.03125 4.27171140 × 10−08 3.59427562 × 10−07

0.015625 2.67374400 × 10−09 2.24843520 × 10−08

0.0078125 1.67950000 × 10−10 1.40043000 × 10−09

Table 5. Maximum Error for Problem 2

h TThMH ThHM

0.125 1.53000000 × 10−06 1.13900000 × 10−05

0.0625 9.93512828 × 10−08 7.19084606 × 10−07

0.03125 6.33294855 × 10−09 4.51587658 × 10−08

0.015625 4.00945820 × 10−10 2.83063643 × 10−09

0.0078125 2.63143000 × 10−11 1.78347304 × 10−10

4. Discussion47

The proposed scheme is applied on two test problems along sides its base method.48

The problems are linear non homogeneous and non linear homogeneous, respectively.49

The methods maintained a remarkable level of accuracy in solving the problems. It is50

also obvious as h approaches zero the max. error decreases, which indicates convergence.51

That is to say the fitted scheme converges faster, as its error decrease more than that of52

the base method, especially on Problem 2.53

5. Conclusions54

A fitted numerical scheme for numerical integration of oscillatory problems is55

proposed and derived. The scheme is validated using test problems whose analytical56

solutions are known. From the results obtained, it can be concluded that the fitted form57

of improved hybrid method can be more promising in tackling oscillatory problems,58

especially non linear ones.59

Abbreviations60

The following abbreviations are used in this manuscript:61

62

ThHM The three-step two stage improved hybrid method derived in [11]
TThHM The proposed scheme presented in this paper

63
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