AN ACCELERATED ITERATIVE TECHNIQUE: THIRD REFINEMENT OF GAUSS SEIDEL ALGORITHM FOR LINEAR SYSTEMS

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics,

Federal University of Technology, Minna, Nigeria.

01-15 May, 2023

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Outline

- Introduction
- Methodology
- Convergence Analysis
- Result and Discussion
- Conclusion

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Solving a large linear system is one of the challenges of most modeling problems today. A linear system can be expressed in the format:

$$At = b \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ is a matrix of coefficients, $b \in \mathbb{R}^{n}$ is a column of constants and t is an unknown vector to be determined. The partitioning of A gives

A = D - G - H

(2)

In which *D* is the diagonal component and -H, -G are the strictly upper and bottom triangular constituents of *A* respectively.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

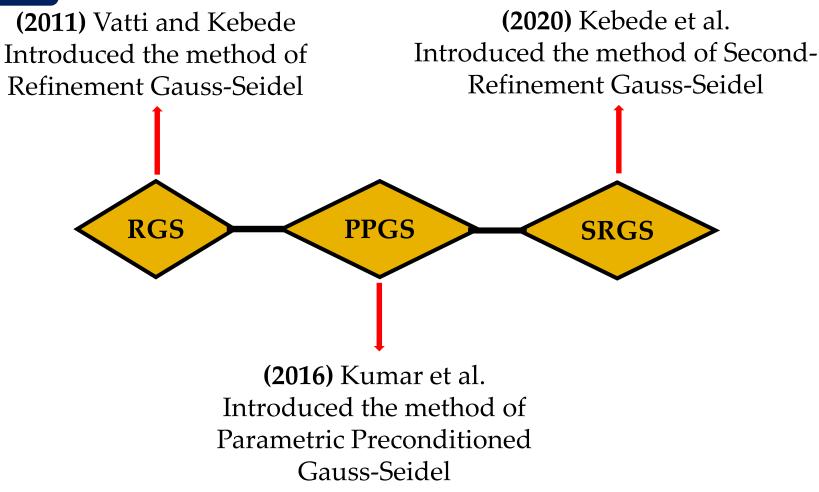
Statement Problem

- Iterative approaches are unquestionably the most effective approach to employ, when solving linear systems.
- However, such approach may require several rounds to converge, which reduces computer storage and computing performance.
- In such cases, it is vital to modify or redesign existing methods in order to achieve approximate solutions with rapid convergence.
- This motivated the current study to offer an accelerated technique capable of providing better solutions quickly.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Related Research



Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Current Research

- In this study, a third refinement of Gauss-Seidel method for solving linear systems is proposed.
- The convergence properties of the technique were examined.
- The proposed technique was employed to solve linear systems.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Methodology

Considering a linear system of (1), combination of (1) and (2) and process gives the Gauss-Seidel method as

$$t^{(n+1)} = (D - G)^{-1} H t^{(n)} + (D - G)^{-1} b$$

The general format of refinement approach is

$$t^{(n+1)} = \tilde{t}^{(n+1)} + (D - G)^{-1} \left(b - A \tilde{t}^{(n+1)} \right)$$

Then Refinement of Gauss-Seidel is obtained as

$$t^{(n+1)} = \left[\left(D - G \right)^{-1} H \right]^2 t^{(n)} + \left[I + \left(D - G \right)^{-1} H \right] \left(D - G \right)^{-1} b$$
(5)

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

(3

Methodology

Modification of (5) results into

$$t^{(n+1)} = \left[\left(D - G \right)^{-1} H \right]^3 t^{(n)} + \left[I + \left(D - G \right)^{-1} H + \left(\left(D - G \right)^{-1} H \right)^2 \right] \left(D - G \right)^{-1} b$$
(6)

We remodel (6) to obtain

$$t^{(n+1)} = \left[\left(D - G \right)^{-1} H \right]^{4} t^{(n)} + \left[I + \left(D - G \right)^{-1} H + \left(\left(D - G \right)^{-1} H \right)^{2} + \left(\left(D - G \right)^{-1} H \right)^{3} \right] \left(D - G \right)^{-1} b$$

Equation (7) is called Third Refinement of Gauss-Seidel (TRGS) method.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Convergence Analysis

The third refinement of Gauss-Seidel (TRGS) method converges if the spectral radius of its iteration matrix is less than 1, expressed as;

$$\left[\rho\left(\left(D-G\right)^{-1}H\right)\right]^4 < 1$$

Also, the closer the spectral radius is to zero, the faster the convergence

Theorem 1: If *A* is strictly diagonally dominant (SDD) matrix, then the TRGS method converges for any choice of the initial guess $t^{(0)}$.

Theorem 2: If *A* is an M-matrix, then the TRGS method converges for any initial guess $t^{(0)}$.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Result and Discussion

Applied problem [4]: Consider the linear system of equations;

The true solution of the applied problem is t = (1.0, 2.0, -1.0, 0.0, 1.0, 1.0, -2.0, 1.0)

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Result and Discussion

Technique	Iteration Step	Spectral Radius	Execution Time (sec)	Convergence Rate	
GS	88	0.89530	6.70	0.04803	
RGS	44	0.80157	5.53	0.09606	
SRGS	30	0.71765	5.00	0.14408	
TRGS	22	0.64251	4.10	0.19212	

Table 1. Comparison of Spectral radius and Convergence rate for the Applied Problem.

The Table shows that TRGS reduced the number of iteration to one-fourth of GS, half of RGS and a few steps of SRGS. Based on how close their spectral radii are to zero, it is inferred that the TRGS technique has a faster

rate of convergence than the initial refinements of GS ($\rho(TRGS) < \rho(SRGS) < \rho(RGS) < \rho(GS) < 1$)

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

Result and Discussion

Table 2. Solution of the Applied Problem

Technique	n	$t_1^{(n)}$	$t_2^{(n)}$	$t_3^{(n)}$	$t_4^{(n)}$	$t_5^{(n)}$	$t_6^{(n)}$	$t_7^{(n)}$	$t_8^{(n)}$		
GS	1	1.47620	1.63720	-1.44920	0.04476	1.14180	0.91970	-1.95840	0.79746		
	2	0.86540	1.96410	-1.02590	-0.02391	0.94982	0.90209	-2.07580	0.94392		
	• •	• •	•	•	:	•	• •	• •	• •		
	87	0.99999	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.00000		
	88	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.00000		
RGS	1	0.86540	1.96410	-1.02590	-0.23917	0.949820	0.90209	-2.07580	0.94392		
	2	0.94909	1.94710	-1.05170	-0.04878	0.95370	0.95407	-2.04670	0.95306		
	• •	• •	•	•	:	•	• •	• •	• •		
	43	0.99999	2.00000	-1.00000	0.00000	0.99999	0.99999	-2.00000	0.99999		
	44	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.00000		
SRGS	1	0.95672	1.95870	-1.05540	-0.06439	0.94007	0.94674	-2.04710	0.95308		
	2	0.95952	1.96010	-1.03950	-0.03950	0.96145	0.96206	-2.03740	0.96315		
	•	• • •	•	• •	•	• •	• • •	• • •	• •		
	29	0.99999	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.00000		
	30	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.00000		
TRGS	1	0.94909	1.94710	-1.05170	-0.04878	0.95370	0.95407	-2.04670	0.95306		
	2	0.96741	1.96790	-1.03170	-0.03170	0.96917	0.96959	-2.03000	0.97042		
	•	• • •	• •	• •	• •	• • •	• •	• • •	• •		
	21	0.99999	2.00000	-1.00000	0.00000	0.99999	0.99999	-2.00000	0.99999		
	22	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.00000		

Conclusion

- The proposed TRGS method achieve a rapid convergence rate compared to GS, RGS and SRGS methods.
- The technique has a significant improvement in reduction of the number of iteration compared to other initial refinement of GS techniques.
- TRGS produces a qualitative and quantitative shift in solving linear systems.
- The proposed technique presents a much more convenient approach of solving linear systems.
- The proposed technique is more efficient than existing refinements of GS.

Kadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

References

- 1. Vatti, V.B.K.; Tesfaye, E.K. A refinement of Gauss-Seidel method for solving of linear system of equations. (2011), *International Journal of Contemporary Mathematics and Science*, 63, 117-127.
- 2. Tesfaye, E.K.; Awgichew, G.; Haile, E.; Gashaye, D.A. Second refinement of Gauss-Seidel iteration method for solving linear system of equations. (2020), *Ethiopia Journal of Science and technology*, 13(10), 1-15.
- 3. Kumar, V.B.; Vatti; Shouri, D. Parametric preconditioned Gauss-Seidel iterative method. (2016), *International Journal of Current Research* 8(09), 37905-37910.
- 4. Meligy, Sh.A.; Youssef, I.K. Relaxation parameters and composite refinement techniques. **(2022)**, *Results in Applied Mathematics Journal*. <u>https://doi.org/10.1016/j.rinam.2022.100282</u>.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna

THANK YOU

SO MUCH

FOR LISTENING.

Khadeejah James Audu & James Nkereuwem Essien

Department of Mathematics, FUTMinna