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Abstract: We consider a queuing system GIν|M|1|∞ with arrival of customer batches, general
renewal arrivals, exponential service times, single service channel and infinite number of waiting
positions, customers are serviced in the order of their arrival. In the stationary case a new form of the
probability generating functions of the number of clients in the system is derived. This new form is
written in terms of the p.g.f. of the tail distribution function of the number of customers per group
and of the p.g.f. of a embedded discrete time homogeneous Markov chain. In a queuing system with
batch Poisson arrival flow Mν

λ|Mµ|1|∞ the number of customers in the system can be obtained from
the normalized tail distribution.

Keywords: queueing system; infinite capacity; server; batch arrivals; renewal process; probability
generating functions; embedded Markov chain; distribution of the number of customers

1. Introduction

Many practical application in communication systems, production systems, trans-
portation and stocking systems, information processing systems, etc., can be modelled as
queueing system. Therefore the queuing theory is very useful for solving this problems.
One of the important types of queueing systems is bulk queuing systems [1]. The batch
queues is a class of queues in which arrival or service (or both) is in bulks. Many scientific
publications is devoted to this type of queuing systems [2,3].

In this manuscript we consider a batch queueing system GIν|M|1|∞. It was considered
in the works [4,5]. The brief description of this system is as follows. Customers arrival
moments 0 < t1 < t2 < ... < tn < ... constitute a renewal process [6] with the probability
generating function P{tn − tn−1 < t} = F(t) . Customers arrive in batches at a single server
queue. At every moment tn a group of νn customers arrives. A collection of this random
variables νn is independent and identically distributed. Additionally suppose that νn are
bounded and

α(z) = Mzνn = α1z + α2z2 + ... + αmzm , αm 6= 0

is its generating function. The system has single service channel and service time is
exponentially distributed with parameter µ. The queue has infinit capacity and customers
are serviced in the order of their arrival.

Let a stochastic process ξ(t) denote the number of customers in the queueing system
at time t. The stationary distribution of this process can be described using the probability
generating function

P(z) = lim
t→∞

Mzξ(t) =
∞

∑
n=0

pnzn . (1)

The probability pn can be interpreted as the fraction of time that n customers are in the system.
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Consider process ξ(t) at arrival moments of batches of customers and denote

ξn = ξ(tn − 0), n = 1, 2, ... , ξ1 = 0 .

Then ξn describe the number of customers in sistems at the arrival moment of
batches of customers tn. It’s obvious [4] that the sequence of ξn constitutes a homoge-
nous Markov chain.

The stationary distribution of the chain ξn to can be described using the probability
generating function

π(z) = lim
n→∞

Mzξn =
∞

∑
k=0

πkzk . (2)

We will calculate the stationary distribution of the process ξ(t) by calculating the
corresponding distribution in the embedded Markov chain ξn.

It is known [4,5] that Markov chain ξn has a stationary distribution if and only if

ν =
m

∑
k=0

kαk < µT , (3)

where T =
∫ ∞

0
tdF(t) is the average inter-arrival time, and

ν = Mνn = α′(z)
∣∣
z=1

is the average number of customers in an arriving batch. The steady state condition (3) of
queue can be written in the traffic rate form

ρ =
ν

µT
< 1 (4)

where ρ is the traffic rate, here generalized for batch systems. Next, we suppose that the
inequality (4) holds.

2. Results

As we will see below, some normalized tail probabilities [7], and only they connect the
stationary distribution of the stochastic process ξ(t) with the stationary distribution of the
chain ξn. Therefore, it will be convenient to use a notation for the distribution tails of νn. So
we shall write

Ak = P{νn > k} =
m

∑
l=k

αl , k = 1, . . . , m

and

A(z) =
1
ν

m

∑
k=1

Akzk . (5)

In this case, it is easy to see that A(z) is the probability generating function for some
discrete random variable ζ with the probability mass function

qk = P{ζ = k} = Ak/ν , k = 1, . . . , m .

Let ’s call the probability distributions given by {qk} the normalized distribution tails
and A(z) the probability generating function of the normalized distribution tails.

For A(z) it can be shown that

A(z) =
z
ν

1− α(z)
1− z

.
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So, we have the following chain of equalities:

ν

z
A(z) =

m

∑
l=k

Akzk−1 =

= α1 + α2(1 + z) + · · ·+ αm

(
1 + z + · · ·+ zm−1

)
=

=
α1(1− z) + α2

(
1− z2)+ · · ·+ αm(1− zm)

1− z
=

=
1− α1z− α2z2 − · · · − αmzm

1− z
=

1− α(z)
1− z

.

This approach allows us to formulate two theorem.

Theorem 1. Under the condition stationary distribution of the process ξ(t) exists and it may be
defined by the generating funtion

P(z) = ρπ(z)A(z) + 1− ρ , (6)

where A(z) is the probability generating function (5), ρ is traffic rate (4), π(z) is defined by (2).

Remark 1. Formula (6) show that the distribution of the probability pn is a mixture the degenerate
distribution and distribution can be represented as convolution of two distributions: one of which is
the distribution of the nested Markov chain, and the other is the normalized tail distribution of the
arriving batch sizes.

Now let us consider a queuing system Mν
λ|Mµ|1|∞ with batch Poisson arrival flow in

which the arrival rate constant λ, i.e., batch of customers arrive with exponential interarrival
times with mean T = 1

λ . In this case , the following theorem holds.

Theorem 2. For sistem Mν
λ|Mµ|1|∞ under (4) the condition stationary distribution of the process

ξ(t) exists and it may be defined by the generating funtion

P(z) = π(z) =
1− ρ

1− ρA(z)
(7)

where A(z) from (5), and ρ is traffic rate (4), π(z) is defined by (2).

3. Conclusions

In this article, we studied relationships among probability distributions in a single
server batch queueing model GIν

λ|Mµ|1|∞. Future research may be devoted to the search
for similar probabilistic relationships between the target sequence of probabilities and the
corresponding nested Markov chain in other queuing systems.
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