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Abstract: The univariate Toppleone distribution introduced by [12] with close forms of cumulative 

distribution function i.e [0, 1] is extended to unbounded limit called Log-Toppleone distribution, 

the shapes of the hazard function can be increase, decrease or constant, therefore, can serve as an 

alternative distribution to the gamma, Weibull and exponential distributions. Bivariate of this pro-

posed distribution is introduced by joining probability density function using three distinct copulas. 

The MLE, IFM and Bayesian method of estimation were employed to estimate the parameters, the 

Plackett copula regarded as the best based on MLE and IFM method of estimation while Clayton 

copula regarded as the best using Bayesian method. 

Keywords: Log-Toppleone distribution; Farlie- Gumbel- Morgenstern; Clayton copula; Plackett 

copula 

 

1. Introduction 

Development and the use of statistical distributions is not a new matter in statistics. 

Generating statistical distribution began with the used of system of differential equation 

approach as in [1], the method for generating system of frequency curves and the quantile 

method by [2]. Since then, the trend change to adding parameter(s) to an existing distri-

butions as in [3] or combining existing standard distributions as in [4]. Other methods are 

beta generated method and transformed-transformer method respectively proposed by 

[5,6]. 

Many real life phenomena Such as Engineering, Science, Economics and so on, pre-

sent datasets inform of bivariate in which one component may influence the lifetime of 

the other component ie in Science one may study the age and resting heart rate for an 

individuals. To model these datasets, several bivariate distributions were introduced by 

[7–11] and many more. 

2. Methods 

This section, provides the structural form of proposed unbounded univariate and 

bivariate Log-Toppleone distribution using three different copulas functions. 

The probability distribution and the density function of Toppleone distribution in-

troduced by [12] are respectively given by: 
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( / ) (2 ) 0 1; 0F x x x x  = −     (1) 

1 1( / ) 2 (1 )(2 ) 0 1; 0f x x x x x   − −= − −     (2) 

where 0  is the shape parameter. 

2.1. Log- Toppleone Distribution 

The new propose log- Toppleone distribution is introduce by transforming 

log(1 )X t= − −  in Equation (1) if T serve as a random variable denote the time to the 

occurrence of an event of interest: 

2( / ) (1 ) (2 (1 )) (1 ) , 0; 0t t tF t e e e t   − − −= − − − = −    (3) 

the parameter  will maintain its status as a shape parameter. The corresponding pdf is 

obtain by differentiating Equation (3) as: 

2 2 1( / ) 2 (1 ) , 0; 0t tf t e e t  − − −= −    (4) 

The survival and hazard function of the log-Toppleone distribution are respectively 

given by: 

2( / ) 1 (1 )tS t e  −= − −  (5) 

The shapes of the hazard function can be increase, decrease or constant, therefore, 

can serve as an alternative distribution to the gamma, Weibull and exponential distribu-

tions. 

  

Figure 1. Plots of the pdf (1st) and hazard function (2nd) of Log- Toppleone distribution for some 

values of parameters. 

2.2. Copula 

Sklar [13] was first introduced the Copula function to connect the multivariate distri-

bution function with their individual marginal 

2.2.1. The Model Based on Farlie- Gumbel- Morgenstern Copula 

The joint survival function based on FGM copula for 1T  and 2T  is given by 

( ) ( ) ( ) ( ) ( ) 1 2 1 2 1 2, 1S t t S t S t F t F t= +  (6) 
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where 
 1,1  −

 

2.2.2. The Model Based on Clayton Copula 

The joint survival function based on Clayton copula for 1T  and 2T  is given by 

( )
1

1 2 1 2( , ) ( ) ( ) 1S t t S t S t  
−

− −= + −  (7) 

where   is the dependence parameter, takes values in the interval (0, )  

2.2.3. The Model Based on Plackett Copula 

The joint survival function based on Plackett copula for 1T  and 2T  is given by 

( )( ) ( ) ( )
2

1 2 1 2 1 2

1 2

( ) ( ) (1 1 1 1 4 1

2( 1)

) ( ) ( ) ( )
( , )

S t S t S t S t S t S t
S t t

   



+ − + − + − + − − 

−


=  (8) 

where 
( )0, .  

 
2.3. Inference Methods 

This section provide the parameter estimates of bivariate log-Toppleone distribution 

using the MLE, IFM and Bayesian method of estimation. 

Bayesian Method of Estimation 

This section look at, when both 1it and 2it are censored and uncensored observations. 

(a) When both 1it and 2it are censored observations 

Let assume, such that 1ji =  if jit  are observations, for 1,2j = and 1,2,.....i n= , 

then the likelihood function is given by: 

 
1 2 1 2 2 1

1 2

(1 ) (1 )
2

(1 )(1 )1 2 1 2 1 2
1 2

1 1 2 1 2

( , ) ( , ) ( , )
( , )
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i i

n
i i i i i i

i i

i i i i i

S t t S t t S t t
S t t

t t t t

     

 

− −

− −

=

      − −
     

        
  (9) 

1i  and 2i  be two indicator variables and and 1,2,.....i n=  

(b) When both 1it and 2it are uncensored or complete observations 

When both 1it and 2it are uncensored or complete observations, i.e., 1ji = , then the 

likelihood function in Equation (8) will reduce to: 

2

1 2

1 1 2

( , )n
i i

i i i

S t t

t t=

 
 

  
  (10) 

2.4. Deviance Information Criteria 

Deviance Information Criteria (DIC) proposed by [14] is defined as: 

ˆ( ) ( ) 2 pD D n =  −  

where ˆ( )D  is the deviance and ˆ( )pn D D= −  and D is the posterior deviance. 

3. Results and Discussion 
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This section provides the goodness of fit results for all the copulas 

From Table 1, all the results of p-value for the copulas are statistically significant, this 

proved the suitability of all the copulas for the dataset. The goodness of fit measures i.e., 

AIC and BIC are employed to select the best model, the model with least values of AIC 

and BIC is regarded as the best model. The results from the Plackett copula is the least for 

all the criterion, therefore Plackett copula is the best over FGM copula. For the estimation 

method, the MLE estimates are better than that of IFM estimates for the two models, based 

on standard error values. 

Table 1. Standard error, p-value and goodness of fit measures results for the copula. 

Copula. Methods SE p-Value 
Dependence 

Parameter 
AIC BIC 

FGM Copula  0.0000 0.0000 37.0010 6177.690 6179.106 

Plackett Copula MLE 2.0970 0.0000 41.1350 6168.544 6169.960 

FGM Copula  2.0970 0.0000 28.8580 6200.704 6202.120 

Plackett Copula IFM 2.9660 0.0000 29.9265 6196.408 6197.824 

From Tables 2 and 3, The joint posterior distribution is obtained by combining the 

likelihood function with joint prior distribution to have some information of interest, this 

information were derived by generating different gibbs sample for each parameter. The 

different sample generated helped for observing the value of DIC as sample size increases 

and its clearly showed that this process needs large sample size for small value of DIC 

and batter selection of model. Here the Clayton copula with least value of DIC for different 

sample size is regarded as best model over FGM for the censored and uncensored cases. 

Table 2. Posterior summary statistics for censored dataset using FGM and Clayton copula function. 

Gibbs Samples for 

Parameters 

 FGM COPULA CLAYTON COPULA 

Par. Mean MC Error 95% CI Mean MC Error 95% CI 

1000 

1  0.9738 0.0040 (0.8889, 0.9998) 0.8720 0.0204 (0.6556, 0.9986) 

2  61.000 5.9670 (5.1140, 94.960) 13.450 2.4130 (1.5550, 36.860) 

  8.7960 0.8389 (0.9910, 14.340) 17.850 3.3990 (1.4890, 49.380) 

   DIC = 4409 DIC = 2981 

10,000 

1  0.9734 0.0021 (0.8894, 0.9994) 0.7746 0.0052 (0.6479, 0.9887) 

2  45.180 1.1470 (9.7790, 84.0200) 25.700 0.5973 (1.8310, 33.680) 

  69.660 2.1100 (1.5960, 92.9900) 44.270 1.0790 (1.7960, 57.560) 

  DIC = 3868 DIC = 2502 

100,000 

1  0.9747 0.0004 (0.9063, 0.9994) 0.7624 0.0010 (0.6425, 0.8983) 

2  43.650 0.1995 (34.740, 53.680) 26.850 0.1072 (20.940, 33.500) 

  76.340 0.3931 (60.640, 93.550) 46.940 0.1988 (36.750, 58.350) 

Gibbs samples for 

Parameters 
DIC = 3786 DIC = 2448 
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Table 3. Posterior summary statistics for uncensored dataset using FGM and Clayton copula func-

tion. 

Gibbs Samples for 

Parameters 

 FGM COPULA CLAYTON COPULA 

Par. Mean MC Error 95% CI Mean MC Error 95% CI 

1000 

1  0.9224 0.0154 (0.6035, 0.9993) 0.7164 0.0113 (0.5797, 0.8807) 

2  15.750 1.2350 (5.1590, 29.210) 8.3210 0.4135 (0.9622, 11.610) 

  22.100 2.9410 (0.9919, 44.240) 22.370 0.9948 (4.8590, 31.990) 

   DIC = 4489 DIC = 2679 

10,000 

1  0.9665 0.0030 (0.8747, 0.9992) 0.7255 0.0022 (0.6162, 0.8484) 

2  14.540 0.2097 (11.080, 21.480) 9.8050 0.0897 (7.0100, 12.130) 

  36.100 0.7086 (5.9070, 45.080) 21.360 0.1585 (16.650, 27.690) 

  DIC = 4188 DIC = 2631 

100,000 

1  0.9681 0.0006 (0.8864, 0.9991) 0.7267 0.0006 (0.6159, 0.8497) 

2  14.400 0.0223 (11.640, 17.500) 9.9510 0.0173 (7.8550, 12.230) 

  37.610 0.1258 (30.400, 45.410) 21.240 0.0238 (16.730, 26.390) 

  DIC = 4156 DIC = 2631 

4. Conclusions 

The univariate Toppleone distribution introduced by [12] with close forms of cumu-

lative distribution function i.e [0, 1] is extended to unbound limit called Log-Toppleone 

distribution, the shapes of the hazard function can be increase, decrease or constant, there-

fore, can serve as an alternative distribution to the gamma, Weibull and exponential dis-

tributions. Bivariate of this proposed distribution is introduced by joining probability den-

sity function using three distinct copulas, first, two models are studied based on FGM and 

Plackett copula, the parameters were estimated using the MLE and IFM estimation 

method and the Plackett copula with least values of AIC and BIC for all two methods of 

estimation fit the dataset very well compare to FGM copula. Another two copulas: Clayton 

and FGM were implemented using the Bayesian method of estimation, this method is 

based on Markov Chain Monte Carlo simulation technique and the criteria used is Devi-

ance information criteria (DIC). The Clayton copula with least value of DIC for different 

sample size is regarded as best model over FGM for the censored and uncensored cases. 
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