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Department of Applied Mathematics, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków,
Poland; apiekosz@pk.edu.pl
† Presented at the 1st International Online Conference on Mathematics and Applications; Available online:

https://iocma2023.sciforum.net/.

Abstract: Alexander Grothendieck suggested creating a new branch of topology, called by him
“topologie modérée”. In the paper “On Grothendieck’s tame topology” by N. A’Campo, L. Ji, and
A. Papadopoulos (Handbook of Teichmüller Theory, Volume VI. IRMA Lectures in Mathematics and
Theoretical Physics Vol. 27 (2016), pp. 521–533) the authors conclude that no such tame topology
has been developed on the purely topological level. We see our theory of sets with distinguished
families of subsets, which we call smopologies, as realising Grothendieck’s idea and the demands
of the mentioned paper. Dropping the requirement of stability under infinite unions makes getting
several equivalences of categories of spaces with categories of lattices possible. We show several
variants of Stone Duality and Esakia Duality for categories of small or locally small spaces and some
subclasses of strictly continuous (or bouned continuous) mappings. Such equivalences are better
than the spectral reflector functor for usual topological spaces. In particular, spectralifications of
Kolmogorov locally small spaces can be obtained by Stone Duality. Small spaces or locally small
spaces seem to be generalised topological spaces. However, looking at them as topological spaces
with additional structure is better. The language of smopologies and bounded continuous mappings
simplifies the language of certain Grothendieck sites and permits us to glue together infinite families
of definable sets in structures with topologies, which was important in the case of developing
o-minimal homotopy theory.

Keywords: tame topology; Stone Duality; Esakia Duality; spectralification; Grothendieck site;
o-minimal structure; equivalence of categories
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1. Introduction
1.1. Grothendieck’s Programme and Basics of Tame Topology

Alexander Grothendieck suggested in his famous scientific programme [1] creating
a new kind of topology, called by him “topologie modérée” (“tame topology” in English)
that would eliminate pathological phenomena (for example, space-filling curves). His
mathematical ideas led to philosophical and physical questions about the nature and
structure of space ([2]). Grothendieck’s programme was realised in many special situations
for many decades, but N. A’Campo, L. Ji and A. Papadopoulos [3] state that no clear
definition of tame topology has been given. One could say that, as a part of model theory or
real algebraic geometry, we have o-minimality (the main reference is [4]), which is widely
recognised as a realisation of Grothendieck’s programme. But in o-minimality, the definable
open sets, not arbitrary open sets, play the main role. This means that, from the tame point
of view, the usual notion of a topology is secondary to another concept basic to some
algebra-friendly topology. We propose the theory of tame spaces (such as small spaces and
locally small spaces) as a realisation of Grothendieck’s postulate on a purely topological level.
Seemingly a kind of generalised topology, but in fact, tame topology is the usual topology
with some additional structure.
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Definition 1 ([5–7]). A locally small space is a pair X = (X,LX), where X is any set and
LX ⊆ P(X) satisfies the following conditions:

(LS1) ∅ ∈ LX ,
(LS2) if A, B ∈ LX , then A ∩ B, A ∪ B ∈ LX ,
(LS3) ∀x ∈ X ∃Ax ∈ LX x ∈ Ax (i.e.,

⋃LX = X).

Elements of LX are called small open subsets (or smops) of X, while LX is called a smopol-
ogy. A small space is such a locally small space (X,LX) that X ∈ LX. Then the smopology is
called unitary. The complements of smops are called co-smops, and the Boolean combinations of
smops are the constructible sets. The families of all co-smops (constructible sets, resp.) of a small
space (X,LX) is denoted by L′X (Con(X ), resp.).

As we see, the idea is to drop some of the conditions for a topology. The finitary
character of small spaces distinguishes them among locally small spaces. A smopology is a
basis of a usual topology. Small spaces were used explicitely in [5–10], while locally small
spaces were used explicitely in [5,6,9,10], sometimes with another definition.

Notation. For families of subsets A,B ⊆ P(X), we use

Ao = {Y ⊆ X : Y ∩ A ∈ A for any A ∈ A},

A∩1 B = {A ∩ B : A ∈ A, B ∈ B}.

1.2. Genealogy and Implicit use of Tame Spaces

Small spaces are pretty often unnamed in the literature ([11], Definition 7.1.14 or [12],
p. 12). Both small and locally small spaces were implicitly used in o-minimal homotopy
theory ([13,14]) under the name of generalised topological spaces (in the sense of Delfs
and Knebusch), which in turn may be seen as sets with G-topologies (compare [15]) or a
particular form of Grothendieck sites (see [8], ([14], p. 2)). Definable or locally definable
spaces, widely used in real algebraic geometry or model theory ([4,8,14,16], implicitly
even [17]), are expansions of small or locally small spaces, respectively.

Definition 1 above gives a simple language for locally small spaces, not using Grothendieck
sites, which is analogical to Lugojan’s ([18]) or Császár’s ([19]) language of generalised
topology, where a family of subsets is required to have some, but not all, conditions
traditionally required for a topology.

1.3. Categories of Tame Spaces

Having locally small spaces and small spaces, we need to distinguish important
mappings between them. That is why we use the following notions.

Definition 2 ([5–7]). Assume (X,LX) and (Y,LY) are locally small spaces. Then a mapping
f : X → Y is:

(a) bounded if LX refines f−1(LY): each A ∈ LX admits B ∈ LY such that A ⊆ f−1(B),
(b) continuous if f−1(LY) ∩1 LX ⊆ LX (i.e., f−1(LY) ⊆ Lo

X),
(c) strongly continuous if f−1(LY) ⊆ LX ,
(d) a strict homeomorphism if f is a bijection and f−1(LY) = LX .

It is suitable to involve the category theory language. The spaces satisfying the Kol-
mogorov separation axiom (T0) are in our focus.

Definition 3 ([5,6]). We have the following categories:

(a) the category LSS of locally small spaces and their bounded continuous mappings,
(b) the full subcategory LSS0 of T0 locally small spaces,
(c) the full subcategory SS0 of T0 small spaces.
(d) the subcategory LSSs

0 in LSS0 of (bounded) strongly continuous mappings.
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Definition 4 ([7]). The topology τ(LX) generated by LX is called the original topology and the
topology τ(Con(X )) generated by Con(X ) is called the constructible topology of (X,LX).

A small space (X,LX) is called Heyting if it is T0 and the closure in the original topology of
any constructible set is a co-smop (i.e., A ∈ L′X for any A ∈ Con(X )).

A map between Heyting small spaces f : X → Y is Heyting continuous if it is continuous
and satisfies any of the following equivalent conditions:

1. f−1(C) = f−1(C) for C ∈ Con(Y),
2. f−1(int(C)) = int( f−1(C)) for C ∈ Con(Y).

We have the category HSS of Heyting small spaces and Heyting continuous maps.

The name “Heyting small spaces” follows the conventions of [20].

1.4. Stone and Esakia Dualities

Although the language of category theory was not developed in 1930’s, Stone Duality
has its name after the papers of M. H. Stone ([21,22] for generalised Boolean algebras,
Ref. [23] for distributive lattices). There exist plenty of available versions ([20,24,25]),
including versions developed by H. Priestley ([26,27]) and named Priestley Duality. Esakia
Duality, while emerged from the considerations on modal logics ([28,29]), can be seen as a
restriction of Priestley Duality.

Algebraic and analytic geometry as well as model theory use Stone Duality. The
spectral topology (also called the Harrison topology) is used in the case of the real spectrum
(see [11,12,30]) and the Zariski spectrum (see [31,32], Chapter II), while the constructible
topology (also called the patch topology) in the case of the space of types ([33,34]), allowing
(in the case of the o-minimal spectrum) retopologisation to the spectral topology ([35]).

There are many extensions of Stone Duality published in recent years. For example: the
locally compact Hausdorff case ([36]), removing the zero-dimensionality together with the
commutativity assumptions ([37]), a generalisation of Gelfand–Naimark–Stone Duality to
completely regular spaces ([38]) and application to the characterisation of normal, Lindelöf,
locally compact Hausdorff spaces ([39]), dropping completely the compactness assump-
tion ([40]). From the algebraic side, we have extensions to: orthomodular lattices ([41]),
some non-distributive (implicative, residuated, or co-residuated) lattices ([42]), and left-
handed skew Boolean algebras ([43]). Esakia Duality has an extension to implicative
semilattices ([44]). Many applications of Stone Duality exist in various contexts ([45–47]).

2. Results

Definition 5 ([6]). A bornology in a bounded lattice (L,∨,∧, 0, 1) is an ideal B ⊆ L such
that

∨
B = 1. The set of all prime filters in L is denoted by PF (L). For each a ∈ L, we have

ã = {F ∈ PF (L) | a ∈ F}. We set Ã = {ã | a ∈ A} ⊆ P(PF (L)) for A ⊆ L.

2.1. Categories of Distributive Lattices

Definition 6 ([6,7]). An object of LatBD is a system (L, Ls, DL) with L = (L,∨,∧, 0, 1) a
bounded distributive lattice, Ls a bornology in L and DL ⊆ PF (L) (a decent lump) satisfying
the conditions:

(1) DL ⊆
⋃

L̃s,
(2) ∀a, b ∈ L a 6= b =⇒ ãd 6= b̃d, where ãd = {F ∈ DL | a ∈ F},
(3) L̃ ∩1 DL = (L̃s ∩1 DL)

o ⊆ P(DL).

A morphism of LatBD from (L, Ls, DL) to (M, Ms, DM) is such a homomorphism of
bounded lattices h : L→ M that:

(a) satisfies the condition of domination ∀a ∈ Ms ∃b ∈ Ls a ∨ h(b) = h(b),
(b) respects the decent lump: {h−1(G) : G ∈ DM} ⊆ DL.

The category LatD may be identified with the full subcategory in LatBD generated by objects
satisfying L = Ls.
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Definition 7 ([6,7]). The category ZLatD has

(1) pairs (L, DL) where L is a distributive lattice with zero and DL is a distinguished decent set
of prime filters in PF (L) as objects,

(2) homomorphisms of lattices with zeros respecting the decent sets of prime filters and satisfying
the condition of domination as morphisms.

The category ZLat may be identified with the full subcategory in ZLatD of objects satisfying
DL = PF (L). Moreover, we have the category HAD of Heyting algebras with decent (i.e.,
constructibly dense) sets and homomorphisms of Heyting algebras respecting the decent sets.

2.2. Categories of Spectral-like Spaces

Definition 8 ([6,7]). An object of SpecBD is a system ((X, τX), COs(X), Xd) where (X, τX) is
a spectral space, COs(X) is a bornology in the bounded lattice CO(X) and Xd (a decent lump)
satisfies the following conditions:

(1) Xd ⊆
⋃

COs(X),
(2) Rd : CO(X) 3 A 7→ A ∩ Xd ∈ CO(X) ∩1 Xd is an isomorphism of lattices,
(3) CO(X) ∩1 Xd = (COs(X) ∩1 Xd)

o ⊆ P(Xd).

A morphism from ((X, τX), COs(X), Xd) to ((Y, τY), COs(Y), Yd) in SpecBD is such a
spectral mapping between spectral spaces g : (X, τX)→ (Y, τY) that:

(a) satisfies the condition of boundedness ∀A ∈ COs(X) ∃B ∈ COs(Y) g(A) ⊆ B,
(b) respects the decent lump: g(Xd) ⊆ Yd.

We have the full subcategory SpecB of objects satisfying Xd =
⋃

COs(X). The category
SpecD may be identified with the subcategory in SpecBD of objects satisfying COs(X) = CO(X).
We also have the category HSpecD of Heyting spectral spaces ([20]) with decent subsets and
spectral mappings respecting the decent subsets.

Definition 9 ([6]). We have the category uSpec of up-spectral spaces and spectral mappings. The
category uSpecDs has

(1) pairs ((X, τX), Xd) where (X, τX) is an up-spectral space and Xd is a distinguished decent
subset of X as objects,

(2) bounded strongly continuous mappings respecting the decent subsets as morphisms.

The category uSpecs may be identified with the full subcategory in uSpecDs generated by
objects satisfying Xd = X.

2.3. Main Equivalences

Theorem 1 ([6,7]). We have the following equivalences:

1. The categories LSS0, LatBDop and SpecBD are equivalent.
2. The categories SS0, LatDop and SpecD are equivalent.
3. The categories uSpec and SpecB are equivalent.
4. The categories uSpecs and ZLat are dually equivalent.
5. The categories LSSs

0, ZLatDop and uSpecDs are equivalent.
6. The categories HSS, HSpecD and (HAD)op are equivalent.

A version of Hofmann-Lawson duality for locally small spaces also exists ([48]).

2.4. The Spectralification Method and Consequences

In analysing small or locally small spaces, the spectral spaces ([20,31]) are especially
helpful. This is achieved by the standard spectralifications, formally introduced in Section 5
of [7] (In particular, spectralifications of a Kolmogorov topological space may be constructed
by choosing lattice bases of the topology). Theorem 1 can be seen as an extension of the
method of taking the real spectrum or the o-minimal spectrum.
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Corollaries on spaces: A Kolmogorov small space is essentially a constructibly dense sub-
set of a spectral space, while a Kolmogorov locally small space is essentially a constructibly
dense subset of an up-spectral space ([6]).

Corollaries on mappings: Bounded continuous mappings between T0 locally small spaces
are restrictions of spectral mappings between up-spectal (or just spectral) spaces to some
constructibly dense subsets ([6]). Open continuous definable mappings between definable
spaces over o-minimal structures are, in particular, Heyting continuous as mappings
between Heyting small spaces ([7]).

3. Conclusions

Since families of sets closed under only finite unions are common in mathematics, a
new branch of general topology (in the spirit of Engelking [49]), considering the above
or new kinds of tame spaces and relevant mappings between them, is possible. We have
initiated the development of such a branch by showing the above equivalences, while the
usual topology gives only spectral reflections (see [20] (Chapter 11)). The use of smopologies
should be helpful in such areas of mathematics as: the generalisations of o-minimality and
other parts of model theory (especially where definable topologies are used), algebraic
geometry, and analytic geometry.
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5. Piękosz, A. Locally small spaces with an application. Acta Math. Hung. 2020, 160, 197–216.
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