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Abstract: In this work, a novel generalized family of distributions called the odd beta prime is in-

troduced. The linear representations of the proposed family are obtained. The expressions for the 

moments, moment generating function, and entropy are derived. A three-parameter special sub-

model of the proposed family called the odd beta prime-exponential distribution is proposed. Fi-

nally, two real data sets are used to illustrate the usefulness and flexibility of the proposed distribu-

tion. 
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1. Introduction 

A popular research field is the construction of novel approaches for extending the 

existing distributions. The two interesting approaches to expanding a probability distri-

bution are the T-X technique proposed by [1] and modified by [2]. The cumulative distri-

bution function (cdf) for the generalizing family of distributions using this approach is 

given as 
( )

( ) 
( )

( ) ( )d ( ) ,

W G x

a

F x v m m V W G x= =                                         (1) 

where ( )v m  is the pdf of the random variable  ,M a b  , such that a b−    

and ( )(x)W G  is a link function of any cdf of continuous distributions that take different 

forms. If we consider the odd function form, ( )
( )

( )
1 ( )

G x
W G x

G x
=

−
, then the cdf of the T-X class 

will be  
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Many authors constructed extended generalized families by using the T-X approach. 

For example, see beta-G [3], Kw-G type-1 [4], gamma-X [5], exponentiated T-X [1], 

Weibull-G [6], generalized odd Lindley-G [7], and Maxwell-Weibull [8]. 

In this study, we consider the odd function form, ( )
( )

( )
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−
. Also, we 

considered the beta prime distribution for 
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Therefore, we now define the odd beta prime-G family with cdf given as 
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The probability distribution function (pdf) of odd beta prime-G family is  
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where ( ; )G x   is a cdf of a baseline distribution with parameter  , ( );g x  is the pdf of 

the baseline distribution, 0c   and 0d   are the shape parameters. 

Here, we are motivated to propose a new flexible family of distribution called the 

odd beta prime generalized (OBP-G) family, which provides greater accuracy and flexi-

bility in fitting real-life data.  

This article unfolds as follows. In Section 2, linear representations of the proposed 

family are derived. Some statistical properties are studied and obtained in Section 3. A 

special sub-model of the proposed family is introduced in Section 4. In Section 5, the per-

formance of the proposed distribution is illustrated via two applications to real data sets. 

Finally, Section 6 concludes the article. 

2. Linear Representations 

This section presents important linear representations of the OBP-G family density 

function defined in (4). 

Let us consider the generalized Binomial expansion as follows. 

( ) ( )
1

0 0

1 1 .
i

ii i

i i
i i

m M M
 


 − − + −

−

= =

   
+ = = −   

   
                                     (5) 

Applying (5) into (4), we get 
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Using the generalized Binomial expansion for 1z  , yields 



Comput. Sci. Math. Forum 2023, 2, FOR PEER REVIEW 3 
 

 

( )
0

( )
1 .

!

n i

j

n j
m z

j n


−

=

 +
− =


                                                   (7) 

Substituting (7) into (6), we obtain 
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3. Statistical Properties 

This section provides some statistical properties of the OBP-G family of distributions, 

such as moments, the moment generating function, and entropy. 

3.1. Moments 

Suppose that X  follows the OBP-G family, the rth moments of X  is obtained as 

( ) ( ) ,rE X f x dx=                                                           (9) 

where ( )f x  is defined in equation (8). 

Substituting (8) into (9) gives the moments of the OBP-G as 
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3.2. Moment Generating Function 

 Assume that a random variable X  follows the OBP-G family, the moment 

generating function of X  is given as 
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 Inserting (8) in (10), we have 
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Which can be expressed as 
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3.3. Entropy 

 Assume that X   is a random variable that follows the OBP-G family, the Rényi 

entropy [9] of X  is expressed as 

1
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The integrand ( )f x
 can be obtained as 
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 Therefore, (14) can be rewritten as  
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 Substituting (5) into (15), we have 
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4. The Odd Beta Prime-Exponential Distribution 

 This section develops a new probability distribution referred to as the odd beta 

prime–exponential (OBPE) distribution as a sub-model of the proposed family. 

Let X  be a random variable with exponential distribution, the cdf and pdf are, respec-

tively, as follows: 

( ) 1 , 0,bxG x e x−= −                                                         (17) 

( ) , 0,bxg x be x−=                                                           (18)      

where 0b   is the rate parameter.   

Hence, the cdf and pdf of the OBPE distribution can be obtained by inserting (17) and 

(18) in (3) and (4), respectively, as follows: 
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5. Applications  

 In this section, we analyzed two real data sets involving engineering and environ-

ment to evaluate the applicability of the OBPE distribution. 

4.1. The Airborne Communications Transceiver Data 

This engineering data was discussed in [10], and it represents the repair times of 46 

failures in (hours) of an airborne communications transceiver. 

Here, we will compare the fits of the OBPE with the gamma-exponentiated exponen-

tial (GEE) in [11] and the beta-exponential (BE) in [12].  

We considered the following criteria to compare these distributions: the values of the 

negative log-likelihood ( )ˆ− , Akaike information criteria (AIC), Bayesian information 

criteria (BIC), Cramer–von Mises (CM), and Anderson– Darling (AD). The smaller the 

values of these statistics, the better the fit to the data. 
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than other competing models. 

Table 1. MLEs with corresponding SEs (in parentheses), and some statistical measures of competing models 

for the airborne communications transceiver data. 

Distribution MLE and SE in () ˆ−  AIC BIC CM AD 

OBPE 0.6583c =  
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Figure 1. The estimated pdfs of the OBPE and other competing models for the airborne communications transceiver data. 

4.2. Exceedances of Wheaton River Flood Data 

This environmental data was analyzed by [13], and it represents the exceedances of 

flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada. The 

data consist of 72 exceedances for the years 1958–1984, rounded to one decimal place.    

Also, from the results in Table 2 and the illustrations in Figure 2, it is obvious from 

these plots that the OBPE provides a better fit to this data than other competing fitted 

models. 

 

Table 2. MLEs with corresponding SEs (in parentheses), and some statistical measures of competing models 

for the exceedances of Wheaton River flood data. 

Distribution MLE and SE in () ˆ−  AIC BIC CM AD 

OBPE 1.2126c =  

(0.1166) 

6.7584d =  

(1.1659) 

1.6077b =  

(0.3743) 

257.839 519.6782 524.231 0.232 1.472 

GEE 10.6378 =  

(1.3609) 

6.6058 =  

(0.6475) 

2.9650 =  

(0.4475) 

279.958 563.9169 568.470 0.330 2.478 

BE 12.2041a =  

(1.4391) 

12.2115b =  

(1.0176) 

5.1753 =  

(0.2352) 

282.334 568.669 573.223 0.469 2.891 
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Figure 2. The estimated pdfs of the OBPE and other competing models for the exceedances of Wheaton River flood data. 

6. Conclusion 

A new family of life distributions, called the odd beta prime-G family, is introduced. 

Some statistical properties of the new family, including moments, the moment generating 

function, and entropy, are derived. A special sub-model of the new proposed family, 

called odd beta prime–exponential distribution, is developed, and two real applications 

are analyzed to demonstrate the flexibility of the new distribution. Empirically, it is 

proved that the proposed model can give better fits to modeling data than the other com-

peting life distributions. 

Author Contributions:  Conceptualization, A.A.S., M.O. and H.D.; Methodology, A.A.S., M.O., 

A.I.I. and M.L.A.; Software, A.A.S. and A.I.I.; Validation, A.A.S., M.O., R.I., H.D., R.I. and A.H.; 

Supervision, M.O. and H.D.; Formal analysis, A.A.S., M.O., A.I.I., and M.L.A. All authors have read 

and agreed to the published of the manuscript. 

Acknowledgments: The authors would like to thank the Universiti Teknologi PETRONAS for 

providing support to this project.  

Data Availability Statement: Not applicable.  

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

[1] A. Alzaatreh, C. Lee, and F. Famoye, "A new method for generating families of continuous distributions," Metron, vol. 71, 

no. 1, pp. 63-79, 2013. 

[2] M. A. Aljarrah, C. Lee, and F. Famoye, "On generating TX family of distributions using quantile functions," Journal of 

Statistical Distributions and Applications, vol. 1, no. 1, pp. 1-17, 2014. 

[3] N. Eugene, C. Lee, and F. Famoye, "Beta-normal distribution and its applications," Communications in Statistics-Theory and 

methods, vol. 31, no. 4, pp. 497-512, 2002. 

[4] G. M. Cordeiro and M. de Castro, "A new family of generalized distributions," Journal of statistical computation and simulation, 

vol. 81, no. 7, pp. 883-898, 2011. 

[5] H. Torabi and N. H. Montazeri, "The logistic-uniform distribution and its applications," Communications in Statistics-

Simulation and Computation, vol. 43, no. 10, pp. 2551-2569, 2014. 

[6] M. Bourguignon, R. B. Silva, and G. M. Cordeiro, "The Weibull-G family of probability distributions," Journal of data science, 

vol. 12, no. 1, pp. 53-68, 2014. 

[7] A. Z. Afify, G. M. Cordeiro, M. E. Maed, M. Alizadeh, H. Al-Mofleh, and Z. M. Nofal, "The generalized odd Lindley-G 

family: Properties and applications," Anais da Academia Brasileira de Ciências, vol. 91, 2019. 

[8] A. I. Ishaq and A. A. Abiodun, "The Maxwell–Weibull distribution in modeling lifetime datasets," Annals of Data Science, 

vol. 7, no. 4, pp. 639-662, 2020. 

[9] A. Rényi, "On measures of entropy and information," in Proceedings of the fourth Berkeley symposium on mathematical statistics 

and probability, 1961, vol. 1, no. 547-561: Berkeley, California, USA.  



Comput. Sci. Math. Forum 2023, 2, FOR PEER REVIEW 7 
 

 

[10] M. K. Refaie, "Burr X exponentiated exponential distribution," Journal of Statistics and Applications, vol. 1, no. 2, pp. 71-88, 

2018. 

[11] M. M. Ristić and N. Balakrishnan, "The gamma-exponentiated exponential distribution," Journal of statistical computation and 

simulation, vol. 82, no. 8, pp. 1191-1206, 2012. 

[12] S. Nadarajah and S. Kotz, "The beta exponential distribution," Reliability engineering & system safety, vol. 91, no. 6, pp. 689-

697, 2006. 

[13] V. Choulakian and M. A. Stephens, "Goodness-of-fit tests for the generalized Pareto distribution," Technometrics, vol. 43, no. 

4, pp. 478-484, 2001. 

 

 


