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Abstract: The strong approximation of a function is a useful tool to analyze the convergence of its
Fourier series. It is based on the summability techniques. However, unlike matrix summability
methods, it uses non-linear methods to derive an auxiliary sequence using approximation errors
generated by the series under analysis. In this paper, we give some direct results on the strong means
of Fourier series of functions in generalized Holder and Zygmund spaces. To elaborate its use, we
deduce some corollaries and a discussion follows the results.
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1. Introduction

The strong approximation rather providing approximations is a tool of analysis. It
is based on the summability techniques. However, unlike matrix summability methods,
it uses non-linear methods to derive an auxiliary sequence using approximation errors
generated by the series under analysis. This auxiliary sequence is further used to analyze
the convergence properties of the series. To know more about the development of strong
approximation methods, one can see the articles by Hyslop [1], and Mittal and Kumar [2].
They give simple settings of strong approximation along with some comparison results.

2. Preliminaries

The classical Lp[0, 2π] spaces define the foundations of Fourier analysis. An Lp[0, 2π],
1 ≤ p ≤ ∞, space contains 2π-periodic, Lebesgue integrable functions, which have finite
norm denoted by ‖ · ‖p, and defined by

‖ f ‖p =


(

1
2π

∫ 2π

0
| f (x)|pdx

)1/p
, 1 ≤ p < ∞,

ess sup
0≤x<2π

| f (x)|, p = ∞.

To measure the smoothness of the functions, we use moduli of smoothness. For f ∈
Lp[0, 2π], the rth-order modulus of smoothness ωr( f ; t)p is defined by

ωr( f ; t)p = sup
0<h≤t

‖∆r
h f (·)‖p

where ∆r
h f (x) = ∑r

k=0(−1)k(r
k) f (x + (r− k)h) denotes rth order forward difference of f at

x with step-size h. The most basic spaces, which encode the smoothness properties of the
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functions, are the Hölder spaces. For the periodic functions, they were first introduced for
the space of 2π-periodic continuous functions [3] (p. 51). Later, Das et al. [4] extended
them to Lp[0, 2π]-spaces. They defined the Hölder spaces Hα(Lp), 0 < α ≤ 1, to contain
functions f ∈ Lp[0, 2π] such that ω1( f ; t)p = O(tα). The norm for f ∈ Hα(Lp) is given by
‖ f ‖Hα(Lp) = ‖ f ‖p + | f |Hα(Lp), where

| f |Hα(Lp) = sup
t>0

ω1( f ; t)p

tα
.

As a further generalization, Das et al. [5] generalized Hölder spaces, Hα(Lp) to Hω(Lp)-
spaces where ω : [0, ∞)→ [0, ∞) is a non-decreasing function with limt→0+ ω(t) = 0. The
Hω(Lp)-spaces contain f ∈ Lp[0, 2π] such that ω1( f ; t)p = O(ω(t)). For f ∈ Hω(Lp), the
norm is defined by ‖ f ‖Hω(Lp) := ‖ f ‖p + | f |Hω(Lp), where

| f |Hω(Lp) = sup
t>0

ω1( f ; t)p

ω(t)
.

The Zygmund spaces are defined using second order modulus of smoothness. The Zyg-
mund spaces Zα(Lp), 0 < α ≤ 2, are defined to contain the functions f ∈ Lp[0, 2π] such
that ω2( f ; t)p = O(tα). The norm for f ∈ Zα(Lp) is defined by ‖ f ‖Zα(Lp) = ‖ f ‖p + | f |Zα(Lp),
where

| f |Zα(Lp) = sup
t>0

ω2( f ; t)p

tα
.

The Zygmund spaces Zα(Lp) can be generalized in the same way as Hölder spaces Hα(Lp).
Let ω : [0, ∞)→ [0, ∞) be a non-decreasing function with limt→0+ ω(t) = 0. Then Zω(Lp)
generalizes Zα(Lp)-spaces by the requirement ω2( f ; t)p = O(ω(t)) for f ∈ Lp[0, 2π]. The
norm for f ∈ Zω(Lp) is defined by ‖ f ‖Zω(Lp) = ‖ f ‖p + | f |Zω(Lp), where

| f |Zω(Lp) = sup
t>0

ω2( f ; t)p

ω(t)
.

For ω(t) = tα, 0 < α ≤ 1, the generalized Hölder space Hω(Lp) becomes Hölder space
Hα(Lp). Similarly, for ω(t) = tα, 0 < α ≤ 2, the generalized Zygmund space Zω(Lp)
coincides with Zygmund space Zα(Lp). Because of the fact that ω2( f ; t)p ≤ 2ω1( f ; t)p,
the Hölder spaces are the subsets of corresponding Zygmund spaces. However, as the
Zygmund norm is not same as Hölder norm on Hölder spaces, the Zygmund spaces do not
generalize the Hölder spaces.

Let f be a 2π-periodic Lebesgue integrable function. Then, the partial sums Sn( f ; x), n =
0, 1, 2, . . . of the trigonometric Fourier series of f can be written as

Sn( f ; x) =
1

2π

∫ π

0
( f (x + t) + f (x− t))Dn(t)dt, n = 0, 1, 2, . . . ,

where Dn(t) denotes the Dirichlet kernel of order n given by

Dn(t) = 1 + 2
n

∑
k=1

cos kt =



2n + 1, t = 2mπ, m ∈ Z,

sin
(
(2n + 1)t

2

)
sin
(

t
2

) , otherwise.
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The properties of the Dirichlet kernels can be found in [6] (p. 235). Rn( f ; x), the nth residual
in the approximation of f by partial sums Sn( f ; x), can be written as following:

Rn( f ; x) := Sn( f ; x)− f (x) =
1

2π

∫ π

0
∆2

t f (x− t)Dn(t)dt, n = 0, 1, 2, . . . .

The summability techniques are an extension of the notion of convergence of a series
in which we try to attach a limit to a non-convergent sequence. The summability methods
may also increase the rate of convergence of an already convergent series. A summability
matrix T = (an,k), n, k = 0, 1, 2, . . . is called regular summability matrix if it satisfies:

(i) limn→∞ an,k = 0,
(ii) ∑∞

k=0|an,k| ≤ M ≥ 0, ∀n,
(iii) ∑∞

k=0 an,k = 1, ∀n.

Let T = (an,k), n, k = 0, 1, 2, . . . be an infinite-dimensional, lower triangular summabil-
ity matrix. Then the sequence

Tn( f ; x) =
n

∑
k=0

an,kSk( f ; x), n = 0, 1, 2, . . . ,

defines the T-means of the trigonometric Fourier series of f . The difference ρn( f ; x) :=
Tn( f ; x)− f (x) denotes the nth residual in the approximation of f by T-means of the Fourier
series. If

n

∑
k=0

an,k = 1, n = 0, 1, 2, . . . , (1)

then we can write

ρn( f ; x) =
n

∑
k=0

an,kRk( f ; x) =
1

2π

∫ π

0
∆2

t f (x− t)Kn(t)dt,

where Kn(t) is the kernel generated by T and defined by Kn(t) := ∑n
k=0 an,kDk(t), n =

0, 1, 2, . . . . If T = (an,k) is such that an,k ≥ 0, n, k = 0, 1, 2, . . . , then for λ > 0, the T-strong
means of the Fourier series are defined by

Un( f , λ, x) =

(
n

∑
k=0

an,k|Rk( f ; x)|λ
)1/λ

.

In this paper, we present estimates of Un( f , λ, x) in Hω(Lp) and Zω(Lp) spaces. These
estimates help in gaining insights of the approximation error in Fourier approximation.

3. Results

First, we prove some auxiliary results as lemmas to make the proof of main results
concise.

Lemma 1. Let Dk(t) be the kth Dirichlet kernel. Then

(i) |Dk(t)| = O(k + 1), t ∈ [0, π].
(ii) |Dk(t)| = O(1/t), t ∈ (0, π].

The lemma can be proved easily.
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Lemma 2. Let { fn}∞
n=0 be a sequence of 2π-periodic Lebesgue measurable functions. Then, for

any p ≥ 1 and 0 < λ ≤ p∥∥∥∥∥∥
(

∞

∑
k=0
| fk(x)|λ

)1/λ
∥∥∥∥∥∥

p

≤
(

∞

∑
k=0
‖ fk‖λ

p

)1/λ

.

Using generalized Minkowski inequality, the lemma can proved easily.
Now, we present the main results.

Theorem 1. Let T = (an,k) be a summability matrix such that an,k ≥ 0, n, k = 0, 1, 2, . . . . Then,
for f ∈ Hω(Lp) and 0 < λ ≤ p

‖Un( f , λ, x)‖Hω(Lp) = O

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

,

provided f satisfies the following conditions:

(i) ∆1
hUn( f , λ, x) = O

(
Un(∆1

h f , λ, x)
)
.

(ii) ‖∆1
h∆2

t f (x)‖p = O
(
ω1( f ; t)‖∆1

h f (x)‖p
)
.

Proof. By the definition of ‖ · ‖Hω(Lp), we have

‖Un( f , λ, x)‖Hω(Lp) = ‖Un( f , λ, x)‖p + |Un( f , λ, x)|Hω(Lp).

We first estimate ‖Un( f , λ, x)‖p. Using Lemma 2,

‖Un( f , λ, x)‖p =

∥∥∥∥∥∥
(

n

∑
k=0

an,k|Rk( f , x)|λ
)1/λ

∥∥∥∥∥∥
p

≤
(

n

∑
k=0

an,k‖Rk( f , x)‖λ
p

)1/λ

. (2)

Using the generalized Minkowski inequality, Lemma 1 and definition of Rk( f , x), we have

‖Rk( f , x)‖p =

∥∥∥∥ 1
2π

∫ π

0
∆2

t f (x− t)Dk(t)dt
∥∥∥∥

p

= O
(∫ π

0
ω2( f ; t)p|Dk(t)|dt

)
= O

(∫ π

0
ω1( f ; t)p|Dk(t)|dt

)
= O

(∫ π
k+1

0
ω1( f ; t)p|Dk(t)|dt +

∫ π

π
k+1

ω1( f ; t)p|Dk(t)|dt

)

= O

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)
. (3)

From (2) and (3), we have

‖Un( f , λ, x)‖p = O

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

. (4)
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Now, we estimate |Un( f , λ, x)|Hω(Lp). Using condition (i), we have

‖∆1
hUn( f , λ, x)‖p = O

(
‖Un(∆1

h f , λ, x)‖p

)
= O


∥∥∥∥∥∥
(

n

∑
k=0

an,k|Rk(∆
1
h f , x)|λ

)1/λ
∥∥∥∥∥∥

p

.

Using Lemma 2, definition of Rk( f , x) and condition (ii), we have

‖∆1
hUn( f , λ, x)‖p = O

(
n

∑
k=0

an,k

∥∥∥Rk(∆
1
h f , x)

∥∥∥λ

p

)1/λ

= O

‖∆1
h f (x)‖p

(
n

∑
k=0

an,k

(∫ π

0
ω1( f ; t)|Dk(t)|dt

)λ
)1/λ

.

Following calculation in (3), we have

‖∆1
hUn( f , λ, x)‖p = O

‖∆1
h f (x)‖p

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

.

Taking supremum for 0 < h ≤ u on both sides

ω1(Un( f , λ, x); u) = O

ω1( f ; u)

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

.

Therefore,

|Un( f , λ, x)|Hω(Lp) = sup
u>0

ω1(Un( f , λ, x); u)p

ω(u)

= O

sup
u>0

ω2( f ; u)p

ω(u)

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ


= O

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

. (5)

Combining (4) and (5), we have

‖Un( f , λ, x)‖Hω(Lp) = O


 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

,

which completes the proof of the theorem.

Depending on the value of λ, condition (i) in Theorem 1 can be relaxed. More precisely,
the following holds.
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Corollary 1. Let T = (an,k) be a summability matrix such that an,k ≥ 0, n, k = 0, 1, 2, . . . . Then,
for f ∈ Hω(Lp) and 1 ≤ λ ≤ p

‖Un( f , λ, x)‖Hω(Lp) = O

 n

∑
k=0

an,k

(
ω

(
π

k + 1

)
+
∫ π

π
k+1

ω(t)
t

dt

)λ
1/λ

provided f satisfies ‖∆1
h∆2

t f (x)‖p = O
(
ω1( f ; t)‖∆1

h f (x)‖p
)
.

Proof. In the light of the Minkowski inequality for sequence spaces, the condition (i) in
Theorem 1 holds for λ ≥ 1. Then, the corollary follows from Theorem 1.

Since, for ω(t) = tα, 0 < α ≤ 1, Hω(Lp)-space reduces to Hα(Lp)-space, we have the
following corollary for f ∈ Hα(Lp).

Corollary 2. Let T = (an,k) be a summability matrix such that an,k ≥ 0, n, k = 0, 1, 2, . . . and
satisfies (1). Then, for f ∈ Hα(Lp) and 0 < λ ≤ p

‖Un( f , λ, x)‖Hα(Lp) = O(1),

provided f satisfies the following conditions:

(i) ∆1
hUn( f , λ, x) = O

(
Un(∆1

h f , λ, x)
)
.

(ii) ‖∆1
h∆2

t f (x)‖p = O
(
ω1( f ; t)‖∆1

h f (x)‖p
)
.
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