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Abstract: The problem of counting independent sets of a graph G, denoted by i(G), is not only
mathematically relevant and interesting, but also has many applications in physics, mathematics, and
theoretical computer science. Regarding hard counting problems, the computation of i(G) for a graph
G has been a key for determining the frontier between efficient counting and intractable counting
procedures. In this article, a novel algorithm for counting independent sets on grid-like structures
is presented. We propose a novel algorithm for the computation of i(Gm,n) for a grid graph with m
rows and n columns based on the ‘Branch and Bound’ design technique. The splitting rule in our
proposal is based on the well-known vertex reduction rule. The vertex in any subgraph from Gm,n to
be selected for the reduction rule must have 4 internal incident faces. The ramification process builds
a computation tree. Our proposal consists of decomposing the initial grid graph until obtaining
outerplanar graphs as the ‘basic subgrids’ associated to the leave nodes of the computation tree. The
resulting time-complexity of our proposal for computing the number of independent sets for grid
graphs is dramatically inferior to the time-complexity that the classic transfer matrix method requires
for computing the same value.

Keywords: grid graphs; graph decomposition; transfer matrix method; branch and bound technique;
counting independent sets

1. Introduction

Counting has become an important area in mathematics, as well as in computer
science, even though it has received less attention than decision problems. This has caused
less knowledge about the complexity of counting problems compared to the study of the
complexity of decision problems. From the computational point of view, the counting of
independent sets of a graph is a determining factor to establish the border between efficient
counting and intractable counting procedures.

The study of the number of independent sets on grid structures Gm,n is closely related
to the “hard-square model” used in statistical physics and, of particular interest is the
so-called hard-square entropy constant [1]. It has several applications in statistical physics
[2,3], e.g., computation in the Potts and hardcore lattice gas model and the problem of
counting q-particle Widom-Rowlinson configurations in graphs, where q > 2.

Euler [4] presents a method to calculate the Fibonacci number of a grid graph, cal-
culating a new parameter b(m, n) using the transfer matrix method. Calkin [5] calculates
the number of independent sets on grid graphs using the transfer matrix method. In [6]
an extension of the transfer matrix method is introduced in order to count the number of
satisfying assignments of Boolean formulas in 2-CNF.

On the other hand, Merrifield and Simmons showed the correlation between the
number of independent sets of G, denoted i(G), and the boiling points of the molecular
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graph represented by G [7]. This is one of the main reasons why the number of independent
sets of a graph G, in mathematical chemistry, is called the Merrifield-Simmons topological
index (M-S) of G. However, in graph theory, i(G) is called the Fibonacci number of G.

A graph invariant is any function on a graph that does not depend on a labelling of
its vertices. A topological index is a graph invariant applicable in chemistry. By IUPAC
terminology, a topological index is a numerical value associated with chemical constitution
purporting for correlation of chemical structure with various physical properties, chemical
reactivities, or biological activities.

The branch and bound paradigm has been widely used to attack problems with
an intrinsic combinatorial exponential character. This method allows us to branch the
original problem into similar subproblems but with lower input parameters than the
original problem. This branching process is continued by forming a computation tree
where its leaves have associated instances derived from the original problem, but where
such instances can be solved efficiently.

In this article, we present a branch and bound algorithm in order to compute the
Merrifield-Simmons topological index of a grid Gm,n. Our proposal provides an exact
algorithm that can be applied to any type of grid, whether regular, irregular or with non-
squares internal faces. The resulting time-complexity of our proposal for computing i(Gm,n)
is dramatically inferior to the time-complexity that the classic transfer matrix method spend
in the computation of i(Gm,n).

2. Preliminares

Let G = (V, E) be an undirected graph with a set of vertices V and a set of edges
E. Two vertices v and w are adjacent if there is an edge {v, w} ∈ E connecting them.
Sometimes, we denote an edge {v, w} ∈ E in abbreviated form as vw.

The neighborhood of x ∈ V is the set N(x) = {y ∈ V : {x, y} ∈ E}, and its closed
neighborhood is N(x)∪{x}, which is denoted by N[x]. The cardinality of a set A is denoted
by |A|. The degree of a vertex x in the graph G, denoted by δ(x), is |N(x)|, and the degree
of the graph G is ∆(G) = max{δ(x) : x ∈ V}.

For a graph G = (V, E), S ⊆ V is an independent set of G, if for every v1, v2 ∈ S, it
holds that {v1, v2} /∈ E. I(G) denotes the set of all independent sets of G. An independent
set S ∈ I(G) is “maximal” if it is not a subset of a larger independent set, and it is
“maximum” if it has the largest size among all independent sets in I(G).

Counting problems are not only mathematically interesting, but they also arise in
many applications. Regarding hard counting problems, the computation of the number of
independent sets of a graph G has been a key in determining the frontier between efficient
counting and intractable counting algorithms.

The corresponding counting problem on independent sets, denoted by i(G), consists
of counting the number of independent sets of a graph G. The computation of i(G) is a
#P-complete problem for graphs G, where ∆(G) ≥ 3 [2,8,9]. There are several polynomial
procedures to compute i(G) when ∆(G) ≤ 2 [10–13]. All of them are methods of linear
complexity with respect to the time.

Planar graphs play an important role both in the graph theory and in the graph
drawing area. A graph G is planar if G admits an embedding in the plane. A planar
drawing partitions the plane into connected regions called faces. The unbounded face is
usually called outer face or external face. If all the vertices are incident to the outer face
of the graph G then it is called an outerplanar graph. Given an embedding of a planar
graph G, we differentiate as external vertices to all vertex of G incident to the outer face,
otherwise it is an internal vertex of G.

A planar graph G has a set of closed non-intersected regions F(G) = { f1, . . . , fk},
called internal faces (or just faces). Each face fi ∈ F(G) is represented by the set of edges
that bound its inside area. We do not consider the outer face of the graph in F(G), because
we want to consider in F(G) only the internal faces of G. Two faces fi, f j ∈ F(G) are
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adjacent if they have common edges, otherwise, they are independent faces. Notice that
two independent faces can have common vertices, but they do not have common edges.

An special planar graph is the called grid graph. A grid graph of size mxn is a
graph G = (V, E) with vertex set V = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and edge set
E = {((j, i), (j + 1, i))|1 ≤ j < m, 1 ≤ i ≤ n} ∪ {((j, i), (j, i + 1))|1 ≤ j < m, 1 ≤ i < n}. In
our case, we denote a grid graph Gm,n where m is the number of rows and n is the number
of columns, and let k = m ∗ n be the number of internal faces (tiling) in Gm,n.

There is a large volume of literature devoted to count structures in a grid graph, e.g.,
spanning trees, Hamiltonian cycles, independent sets, acyclic orientations, k-coloring, and
so on [4–6,14]. Applications of the counting objects on grids also include for instance tiling
and efficient coding schemes in data storage [15].

The classical method for computing the number of independent sets on grid graphs is
based on the transfer matrix method [4,5]. The transfer matrix method consists of building
an initial matrix of Fm+2 rows and Fm+2 columns that are indexed by (m + 1)-vectors of
zeros and ones, and where Fm+2 is the m + 2-th Fibonacci number.

3. A Branch and Bound Algorithm

Some reduction rules have been useful to count combinatorial objects on graphs.
Particularly, the following rules are commonly used for counting independent sets:

1. Vertex reduction rule: let v ∈ V(G),

i(G) = i(G− v) + i(G− (N[v]))

2. Edge division rule : let e = {x, y} ∈ E(G),

i(G) = i(G− e)− i(G− (N[x] ∪ N[y]))

On the other hand, i(G) = ∏k
i=1 i(Gi) where Gi, i = 1, . . . , k are the connected com-

ponents of G, then the total time complexity for computing i(G), denoted as T(i(G)), is
given by the maximum rule as T(i(G)) = max{T(i(Gi)) : Gi is a connected component of
G}. Thus, a first helpful decomposition of the graph is done via its connected components,
and from here on, we consider as an input graph only one connected component.

We have designed a typical branch and bound algorithm in order to count the number
of independent sets from a grid graph that we denote as BB algorithm. BB builds a
computation tree. Into the ramification processes of the computation tree, BB considers two
main points: the criterion to choose a vertex v for applying the vertex division rule, and a
halting criterion to stop the branching on any node of the computation tree. The selected
vertex v from any subgraph in order to apply the vertex division rule, holds:

• v is incident to four internal faces from the current graph.
• One of the internal faces incident to v has a maximum size with respect to the other

internal faces in the subgraph, or it is incident to at least one face with vertices in the
outerface.

The application of the division rule on the vertex v builds two new child nodes v1 and
v2 from the current node in the computation tree. The subgraph associated to v1 is formed
as G1 = G− {v}, and the subgraph associated to v2 is formed as G2 = G− N[v].

At this stage, we have a similar problem for each subgraph Gi, i = 1, 2 that we had
with the original grid G. If we solve the problem in a recurrent way and ri is its solution,
then the complete solution for r = i(G) is r = r1 + r2. The above procedure determines a
enumerative tree whose leaves correspond to the basic subgraph instances.

This process of ramification iterates until obtain as subgraph associated to each child
nodes base instances Gp. The main characteristic on the topology of any base instance Gp
is that there not exists a vertex u ∈ V(Gp) that is incident to 4 internal faces, and in this
case, we have achieved a child node for the enumerative tree. In Figure 1, an example of
the computation tree formed by the algorithm BB can be seen for an initial input grid G4,5.
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We have shown that for those basic prime graph Gp, i(Gp) can be computed in linear
time on its number of edges, since we can consider those basic prime graph as outerplanar
graphs [16,17]. Let us define H(EG) = {Gp : Gp is the graph associated to a leaf node of the
previous enumerative tree. }. After EG has been built, we have that i(G) = ΣGp∈H(EG)

i(Gp).
As the computation for each i(Gp) can be done in linear time, then the complexity time for
i(G) lies on the time complexity time of the number of nodes of the enumerative tree.

Let k = n ·m be the number of internal tiling faces existing on the initial grid Gm,n.
Then, the complexity time of the branch and bound procedure depends on the recurrence
i(G) = i(G− {u}) + i(G− N[u]). This splitting rule has different cases according of the
number of internal faces incident to the vertices in N[u]. In the best case, N[u] can be
incident to 8 tiling faces and in this case, the decomposition rule expressed by the number
of rectangles that are decomposed is given by the recurrence: T(k) = T(k− 8) + T(k− 3).

But in the worst case, if G does not correspond to a basic case, then N[u] should be
incident to at least 5 internal tiling. And in this case, the splitting rule expressed by the
number of rectangles that are decomposed is given by the recurrence:

T(k) = T(k− 5) + T(k− 3) (1)

We seek a solution of the form xk = T(k). Substituting this into the previous recurrence
relation (1) leads to the characteristic polynomial: P(x) = x5 − x2 − 1, whose 5 roots
ri, i = 1, . . . , 5 give rise to solutions of the form T(k) = rk

i .

Figure 1. Processing the grid G4,5.

As we are interested in the asymptotic behavior of the recurrence T(k) we only consider
the real root r1 such that |r1| ≥ |ri|, i = 2, . . . , 5. In this case, the maximum real root is
r1 ≈ 1.194 and, then we obtain a worst-case upper bound of O(rk

1 · poly(k)), where poly(k)
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is a polynomial function that corresponds to the time processing of the basic case graphs.
Thus, the complexity-time of our proposal has an upper bound of O(1.1939k · poly(k)) =
O(1.1939m·n · poly(k)).

Our proposal works without any problem on irregular grids, or on variants of grids
as the aztec diamonds graphs [18], since it lies of looking for vertices incident to more
than three internal faces. On the other hand, although our proposal continues having an
exponential time-complexity, it does not have the explosive combinatorial character that
the classic transfer matrix method has for the computation of i(Gm,n).

4. Conclusions

We have introduced a branch and bound algorithm for the computation of i(Gm,n), for
a grid graph with m rows and n columns. We apply as splitting rule the well-known vertex
reduction rule. The vertex in any subgraph from Gm,n to be selected for the reduction rule
must be incident to 4 internal faces. Our proposal consists of decomposing the initial grid
graph until obtaining as basic cases only outerplanar subgraphs.

The resulting time-complexity of our proposal for computing the number of indepen-
dent sets for grid graphs is dramatically inferior to the time-complexity that the classic
transfer matrix method requires for computing the same value.
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