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Abstract: The number of software failures, software reliability, and failure rates can be measured
and predicted by the software reliability growth model (SRGM). SRGM is developed and tested in a
controlled environment where the operating environment is different. Many SRGMs have developed,
assuming that the working and developing environments are the same. In this paper, we have
developed a new SRGM incorporating the imperfect debugging and testing coverage function in
the presence of a random environment. The proposed model’s parameters are estimated from two
real data sets and compared with some existing SRGMs based on five goodness-of-fit criteria. The
results show that the proposed model gives better descriptive and predictive performance than the
existing model.

Keywords: software reliability growth model (SRGM); mean value function (MVF); testing coverage;
operating environment

1. Introduction

During the past four decades, various software reliability growth models (SRGM) [1–7]
have been proposed to estimate reliability, predict the number of faults, determine the
release time of the software, etc. Various proposed models have been developed based on
different suppositions. For example, some models have discussed perfect debugging [1,7],
and others have discussed imperfect debugging [3,4]. Some researchers have studied
SRGM by considering a constant fault detection rate [1] or by the learning phenomenon [7].
During the testing and debugging process, various research papers have discussed resource
allocation [8–10], testing effort [11,12], etc.

Most models have considered that the operating and testing environments are the
same. In general, the software is implemented in the real working environment after the in-
house testing process. In early 2000, researchers proposed different SRGMs incorporating
uncertainty of the operating environment with new approaches. Teng and Pham [13]
proposed a generalized SRGM considering the effects of the uncertainty of the working
environment on software failure rate. Pham [6,14] presented an SRGM incorporating Vtub-
shaped and Loglog fault detection rates subject to random environments, respectively. Li
and Pham [15] discussed an SRGM where fault removal efficiency and error generation
are incorporated together with the uncertainty of the operating environment. Li et al. [16]
proposed a generalized SRGM incorporating the uncertainty of the operating environment.

This paper presents an SRGM incorporating imperfect debugging and testing coverage
functions under the effects of a random field environment. We have validated the goodness-
of-fit and predictability of the proposed model on two datasets. The remaining part of the
paper is as follows: in Section 2, the explicit solution of the mean value function is derived.
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Numerical and data analysis is performed in Section 3. In Section 4, we summarize the
paper’s conclusions.

2. Software Reliability Growth Model

The cumulative number of detected software faults follows non-homogeneous Poisson
process (NHPP) and express as follows

P{N(t) = n} = m(t)n

n!
exp(−m(t)), for n = 1, 2, 3, . . . . (1)

The mean value function for the fault counting process is represented in terms of
intensity function λ(t) as

m(t) =
∫ t

0
λ(s)ds. (2)

The following assumptions are taken for the proposed model

• The generation of fault in software follows the non-homogeneous Poisson process.
• Fault detection rate is proportional to the remaining faults in the software.
• After fault detection, the debugging process takes place immediately.
• During the testing process, new faults are introduced into the software.
• The testing coverage rate function is incorporated as the fault detection rate function.
• Random testing environment affects the fault detection rate.

Considering the above assumptions, the SRGM, with the uncertainty of the operating
environment, is

dm(t)
dt

= η
c′(t)

1− c(t)

{
N(t)−m(t)

}
, m(0) = 0. (3)

where η is random variable, c(t) is the testing coverage function, N(t) is the total fault
content at time t and m(t) is cumulative number of software failure at time t.

The fault content function is

N(t) = N + dm(t) (4)

where d is the fault introduction rate.
The general solution for the MVF mη(t) is given by

mη(t) =
N

1− d

(
1− e−η

∫ t
0 (1−d) c′(τ)

1−c(τ) dτ
)

(5)

In order to find the mean value function m(t), we have assume that, the random
variable η follows Exponential distribution, i.e., η ∼ exp(α) and the probability density
function of η is given by

f (η) = αe−αη , α > 0 and η ≥ 0. (6)

An application of Laplace transformation of Equation (5) using Exponential distribu-
tion for random variable η, the mean value function m(t) is given by

m(t) =
N

1− d

{
1−

(
α

α + (1− d)
∫ t

0
c′(τ)

1−c(τ)dτ

)}
(7)

In this paper, we have considered the following testing coverage rate function c(t)
as follows

c(t) = 1− e1−ctb
, c > 1, b > 0 (8)
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After substituting c(t) in Equation (8), we obtained the following closed form of the
solution of the mean value function m(t) as

m(t) =
N

1− d

{
1−

(
α

α + (1− d)(ctb − 1)

)}
. (9)

Table 1 summarizes the MVF of the proposed model and other selected models, which
are taken for comparison.

Table 1. Summary of SRGM.

No. Model MVF

1 Goel-Okumoto model [1] m(t) = a(1− e−bt)
2 Delayed S-shaped model [17] m(t) = a(1− (1 + bt)e−bt)

3 Yamada ID model-I [3] m(t) = ab
α+b (e

αt − e−bt)

4 Yamada ID model-II [3] m(t) = a(1− e−bt)(1− α
b ) + αat

5 Yamada et al. (YExp) [18] m(t) = a
{

1− e−γα(1−e−βt)
}

6 Yamada et al. (YRay) [18] m(t) = a
{

1− e−γα(1−e−βt2/2)
}

7 Pham-Zhang model [19] m(t) = 1
1+βe−bt

(
(c + a)(1− e−bt)− ab

b−α (e
−αt − e−bt)

)
8 Pham-Zhang ID model [20] m(t) = a(1− e−bt)(1 + (b + d)t + bdt2)

9 Proposed model m(t) = N
1−d

{
1−

(
α

α+(1−d)(ctb−1)

)}

3. Numerical and Data Analysis
3.1. Software Failure Data

The first data set (DS-I) discussed in this paper is collected from the online IBM entry
software package [2]. During the testing process of 21 weeks, 46 failures are observed. The
second data set (DS-II) is presented and collected from testing system T at AT&T [21]. The
system takes a total of 14 weeks to perform testing. As a result, 22 number of faults are
experienced during the testing weeks.

3.2. Parameter Estimation and Goodness-of-Fit Criteria

Usually, the parameters of the SRGMs are estimated using the least square estimation
(LSE) or maximum likelihood estimation (MLE) methods. We have used the least square
estimation method to estimate the parameters of the proposed model and the parameter
estimation is shown in Table 2.

Table 2. Parameter estimation for DS-I [2] and DS-II [21].

No. Model Parameter Estimate (DSI) Parameter Estimate (DSII)

1 Goel-Okumoto model â = 192.3303, b̂ = 0.0121 â = 23.0127, b̂ = 0.1884
2 Delayed S-shaped model â = 77.253, b̂ = 0.0966 â = 20.0045, b̂ = 0.5198
3 Yamada ID model-I â = 38.1884, b̂ = 0.0439, α̂ = 0.055 â = 26.4815, b̂ = 0.13204, α̂ = 0.00004
4 Yamada ID model-II â = 1.7105, b̂ = 0.2959, α̂ = 1.5247 â = 17.5163, b̂ = 0.2657, α̂ = 0.0251
5 Yamada et al. (YExp) â = 1935.6515, γ̂ = 1.6636, â = 34.7439, γ̂ = 4.2853,

α̂ = 2.4954, β̂ = 0.0003 α̂ = 0.2857, β̂ = 0.1061
6 Yamada et al. (YRay) â = 77.8791, γ̂ = 2.5357, â = 20.7737, γ̂ = 3.7091,

α̂ = 0.5513, β̂ = 0.0045 α̂ = 0.7458, β̂ = 0.0520
7 Pham-Zhang model â = 83.1886, b̂ = 0.0747, β̂ = 0.0533 â = 22.7269, b̂ = 0.223, β̂ = 0.0011

α̂ = 0.0838, ĉ = 8.0682 α̂ = 4.1802, ĉ = 0.1
8 Pham-Zhang ID model â = 75.7344, b̂ = 0.1001, d̂ = 0.001 â = 19.4765, b̂ = 0.6924, d̂ = 0.113
9 Proposed model N̂ = 3.1569, d̂ = 0.9527, N̂ = 29.773, d̂ = 0.001,

α̂ = 6.5911, b̂ = 0.4806, ĉ = 3.8052, α̂ = 0.0006, b̂ = 1.082, ĉ = 1.0001,
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Several goodness-of-fit criteria are available to predict the best-fit model in the litera-
ture. Out of those, the standard criteria used to compare with the existing selected model
are mean-squared error (MSE), predictive ratio risk (PRR), bias, variance, and root mean
square prediction error (RMSPE). The smaller value of all goodness-of-fit criteria gives a
better fit of the model.

The MSE measures the average of the deviation between the predicted values with the
actual data [22] and is represented as

MSE =
1
n

n

∑
i=1

(m(ti)− yi)
2,

where n is the number of observations in the model.
The predictive ratio risk (PRR) gives the distance between the model estimates and

actual data against the model estimates and is defined as [23]

PRR =
n

∑
i=1

(
(m(ti)− yi)

m(ti)

)2

The bias is defined as the sum of the deviation of the model estimates testing curve
from the actual data as [24]

Bias =
1
n

n

∑
i=1

(m(ti)− yi).

The variance is defined as [25]

Variance =

√
∑n

i=1
(
yi −m(ti)− Bias

)2

n− 1
.

The root mean square prediction error (RMSPE) is defined as [25]

RMSPE =
√

Variance2 + Bias2.

where m(ti) is the predict fault at time ti and yi is the observed fault at time ti.

3.3. Model Comparison for DS-I

Table 3 shows that the proposed model performs better regarding MSE, PRR, Bias,
Variance, and RMSE criteria. Figure 1a depicted the comparison between the proposed
model and the existing selected model with observed failure data. Figure 1b shows the
relative errors of the proposed model in terms of the test week. Overall, the proposed
model is better than other selected existing models.

Table 3. Comparison criteria for DS-I.

No MSE PRR Bais Variance RMSE

1 8.973872 1.019703 0.890848 3.452888 3.565957
2 1.480686 26.32063 −0.23211 1.313173 1.333528
4 4.057239 0.371741 −0.65302 2.06001 2.164841
5 1.458347 2.676588 −0.05303 1.241017 1.242149
6 6.245228 0.822893 0.844226 2.56076 2.696332
7 1.959292 55.68604 −0.39852 1.434314 1.488648
8 1.278945 2.729673 −0.0696 1.165397 1.167473
9 1.533603 40.66148 −0.25021 1.344427 1.367511
10 1.168283 0.381616 −0.04598 1.105182 1.106138
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3.4. Model Comparison for DS-II

The performance of the proposed model is evaluated in terms of MSE, PRR, Bias,
Variance, and RMSE and shown in Table 4. The comparison between the proposed and
selected model’s MVF is depicted in Figure 1c. Figure 1d shows the relative errors for
different models.

Table 4. Comparison criteria for DS-II.

No MSE PRR Bias Variance RMSE

1 0.837889 0.126591 0.294310 1.087284 1.126412
2 1.409615 0.385109 −0.12266 1.251662 1.257659
3 1.394307 0.144932 −0.16151 1.225382 1.235980
4 0.718011 0.146291 0.168120 0.929816 0.944893
5 0.746532 0.135072 0.061377 0.896637 0.898735
6 2.027924 1.355159 −0.17989 1.477809 1.488717
7 1.526415 0.118110 0.879679 2.035660 2.217600
8 1.969308 2.921449 −0.17227 1.488848 1.498781
9 0.708826 0.117530 0.051773 0.878641 0.880165

(a) (b)

(c) (d)

Figure 1. (a) Estimated MVFs for different selected and proposed model (DS-I). (b) Relative errors
curve for different selected and proposed model (DS-I). (c) Estimated MVFs for different selected and
proposed model (DS-II). (d) Relative errors curve for different selected and proposed model (DS-II).
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4. Conclusions

Many SRGMs have been proposed on different realistic issues. This paper has in-
corporated imperfect debugging, the testing coverage rate function, and random field
environment in the model. The main contribution of the model is implementing a random
variable, which follows Exponential distribution. The proposed model’s parameter is
estimated using two datasets and validated over five goodness-of-fit criteria. The results
show that the proposed model gives a better fit than other selected models.
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