The rechargeable aqueous zinc ion batteries hold great promise but are extremely limited by the lack of suitable cathodes.

The structural instability and sluggish ion diffusion kinetics of NH₄V₄O₁₀ need to be solved.

The phosphate groups at interlayers of host materials and oxygen defects introduced by phosphate process is an effective modification strategy.

Experiment and Materials

Scheme 1. Schematic diagram of preparation of NH4V4O10 (NVO) and phosphate to P-NVO-2.

Fig 1. V 2p and O 1s spectra of P-NVO, A-NVO and NVO.

Experiment and Materials

Fig 2. Electrochemical properties of P-NVO, A-NVO and NVO. (a) Rate performance of P-NVO, A-NVO and NVO.(b) Cyclability of P-NVO, A-NVO and NVO at 0.5 A g⁻¹. (c) Cyclability of P-NVO, A-NVO and NVO at 10 A g⁻¹.

Electrochemical properties

Fig 3. EIS patterns of all samples (a), CV profiles of P-NVO-2 at different scan rates (b), the contribution ratio of capacitive capacities in P-NVO-2 (c), and the GITT profiles (d).

Electrochemical properties

Fig 4. Ex-situ XRD patterns of P-NVO-2.

Thank you!

Email:1019208029@tju.edu.cn sunxh@tju.edu.cn