Preparation of Mesoporous Bicrystalline N-Doped TiO$_2$ Nanomaterials for Sustainable RhB Degradation under Sunlight †

Elias Assayehegn 1,2,* and Abraha Tadese Gidey 1,*

1 Department of Chemistry, Mekelle University, Mekelle P.O. Box 231, Ethiopia
2 Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India

* Correspondence: assaye98@gmail.com (E.A.); abraha.tadesse@mu.edu.et (A.T.G.);
Tel.: +251-979406226 (E.A.)
† Presented at the 4th International Online Conference on Nanomaterials, 5–19 May 2023;
Available online: https://iocn2023.sciforum.net.

Abstract: N-doped titanium dioxide (N/TiO$_2$) nanomaterials were successfully prepared using titanium butoxide and guanidinium chloride by simple sol-gel method. The significance of annealing gas environment (air, argon, and nitrogen) on their physicochemical and photocatalytic degradation properties was investigated. Indeed, the gas type governed the crystal/phase nature from monophase anatase with less crystallinity to dual-phase anatase/rutile with higher crystallinity. Moreover, results revealed that the introduction of N in the TiO$_2$ matrix led to a red shift towards visible-light, narrowed the bandgap (2.35 eV), and suppressed recombination. Nobly, the N/TiO$_2$ prepared in air demonstrated the highest RhB degradation performance (99%) with the highest rate constant (0.0158 min$^{-1}$) which is twice faster than the undoped TiO$_2$.

Keywords: doping; TiO$_2$; photocatalysis; rhodamine B; anatase and rutile; wastewater; degradation

1. Introduction

Sadly, due to rapid urbanization and industrialization, a growing number of toxic contaminants are entering to water bodies and the trend is expected to be worsened. For instance, RhB is one of the most ubiquitous and industrial effluents. It is particularly challenging and dangerous to degrade by deploying conventional techniques, since it is a hazardous and generates carcinogenic species [1,2]. Meanwhile, advanced oxidation process techniques (such as heterogeneous-catalysis, photocatalysis, electrochemical oxidation, and Fenton) have played indispensable role in neutralizing such dyes [3,4]. Particularly owing to its high chemical inertness, strong oxidizing power, and abundance, TiO$_2$ remains a promising photocatalyst in tackling such environmental problems [5].

Unfortunately, its large bandgap, low solar conversion, and high charge carrier recombination rate limit its practical applications [6], and in alleviating these problems, considerable researches have been carried out [7]. Among nonmetal doping, N-doping into TiO$_2$ matrix has gained specific attention; consequently, various N/TiO$_2$ nanostructures have proven better catalytic performance than typical TiO$_2$ under visible-light [8]. To suppress the charge recombination, preparing mixed-phase TiO$_2$ is recommended than its monophase nanostructure, since the former materials have demonstrated a better photocatalytic performance [9]. However, preparing these mixed-phase nanomaterials requires high temperature (>600 °C) and follows multistep reactions; especially for brookite counterpart is quite challenging [7]. The disadvantage of such high temperature synthesis method is that it significantly reduces the active surface area of the catalyst. Thus,
preparing phase-heterojunction N/TiO$_2$ at lower energy still remains imperative. With this aim, in current work, the effect of annealing gas type on the physicochemical properties of N/TiO$_2$ was investigated. Variety of N/TiO$_2$ nanocrystals were synthesized via sol-gel method using guanidinium chloride (GUA) as an eco-friendly N-dopant source and characterized via different techniques. Besides, their RhB photodegradation performance under direct sunlight was explored.

2. Materials and Method

2.1. Synthesis of N/TiO$_2$: Nanocatalysts

The nanomaterials were prepared through our previous modified method [10,11]; typically:

- Titanium butoxide (11.4 mmol, Sigma Aldrich) was added into ethanolic solution (30 mL, ethanol/water 5:1) step-wise while vigorously stirring.
- In another beaker, equimolar amount of guanidinium chloride (98%, Sigma Aldrich) was added to a solution of ethanol (10 mL) and 5 drops of conc. HNO$_3$ while stirring.
- To this solution, the above white solution was added step-wise while stirring for 2 h.
- The resultant mixture was then sealed and aged for 12 days.
- Finally, it was heated at 400 $^\circ$C for 4 h in a furnace under different gas environment with flow rate of 150 cm3/min (Table 1). The samples prepared in atmospheric air, Ar, and N$_2$ were denoted as NT-A, NT-Ar, and NT-N, respectively. Following the same procedure, a control sample was prepared in air without adding N-dopant, designated as N-0.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ti(OBu)$_4$ (mmol)</th>
<th>GUA (mmol)</th>
<th>Temp. ($^\circ$C)</th>
<th>Gas Type</th>
<th>Phase Comp. (%)</th>
<th>Crystal Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anatase</td>
<td>Rutile</td>
</tr>
<tr>
<td>N-0</td>
<td>11.4</td>
<td>0</td>
<td>400</td>
<td>Air</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>NT-Ar</td>
<td>11.4</td>
<td>11.4</td>
<td>400</td>
<td>Argon</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>NT-N</td>
<td>11.4</td>
<td>11.4</td>
<td></td>
<td>Nitrogen</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>NT-A</td>
<td>11.4</td>
<td>11.4</td>
<td></td>
<td>Air</td>
<td>53</td>
<td>44</td>
</tr>
</tbody>
</table>

2.2. Characterization Techniques of Catalysts

The following techniques have been deployed: X-ray diffractometer (Bruker D8 Advance, Cu-Kα), field emission scanning electron microscopy (FESEM) (SEM (Quanta 400 FEG SEM)), photoluminescence, PL, (JASCO FP-6500), and Jasco V-650 spectrophotometer for the UV-Vis diffused reflectance (DRS).

2.3. Photocatalysis Study

Under natural sunlight, the experiments were carried out at CSIR-NIIST, Trivandrum- India in January. In typical study, as-synthesized photocatalyst (50 mg) was dispersed to RhB solution (200 mL, 20 mg L$^{-1}$). The dye-catalyst suspension was magnetically stirred for 30 min in the dark; it was then exposed to direct sunlight irradiation (11 am to 4 pm) while stirring. At a regular time interval, aliquots of the suspension were withdrawn. After removing the catalysts by centrifugation, the solution was analyzed by UV-vis spectrophotometer (UV-2401-PC-Shimadzu).

3. Results and Discussion

3.1. Structural Analysis

Figure 1 depicts the XRD patterns of as-prepared materials. It can be clearly seen that both NT-Ar and NT-N have 98% anatase phase (JCPDS: 21-1272) like N-0; whereas NT-A
comprises a mixture of 53% anatase and 44% rutile phases (JCPDS: 21-1276) with trace amount of brookite (Table 1) [12]. Comparing their respective XRD peaks, the doping occurred without changing the crystal structure in case of NT-Ar and NT-N; however, it caused a significant phase change in NT-A. Moreover, this difference in gas environment influences the degree of crystallinity and particle size; NT-A displays the highest crystallinity nature of all as-synthesized powders with larger anatase nanoparticles size (10.2 nm) than that of NT-Ar and NT-N (8.5 nm) (Table 1). This strongly suggests that calcining TiO₂ nanoparticles in atmospheric air favors particle growth; while in Ar, and N₂ hinder the growth of the nanoparticles.

3.2. Morphological Analysis

The field-emission SEM images and elemental analysis of TiO₂ based materials are presented (Figure 2). The undoped has roughly spherical particles with aggregates (Figure 2a). Importantly, both NT-Ar and NT-N doped samples (Figure 2b,c) have spherical shape which infers to their surface stability by respective gas type. Whereas NT-A has coral-like structure (Figure 2d); in this particular sample, particle coarsening and neck formation among the particles are exhibited due to the surface energy increment under annealing in air. Consequently, its particle size is increased, which is in agreement with the previous XRD discussion. Meanwhile, according to EDAX elemental results (Figure 2e–h), N-0 has Ti and O, however the N/TiO₂ materials have a third additional N element with 6.8–10.1 atomic % range, confirming nitrogen has been effectively incorporated. Moreover, the figure also revealed that the doped-N is homogenously distributed.
3.3. Optical-Response Analysis

The DRS, Kubelka-Munk, and PL measurements of N-0, NT-Ar, NT-N, and NT-A are depicted (Figure 3); as shown, the unmodified white TiO$_2$ has an absorption peak in the UV region (~400 nm). However, all as-obtained N-doped catalysts have two peaks: a sharp peak at ~420 nm and a broad one in the range 420–600 nm, displaying an extended red shift to visible-light region. Meanwhile according Kubelka-Munk plot (Figure 3b), all the N/TiO$_2$ materials exhibited lower band gap energy (E_g) than TiO$_2$; NT-N particularly demonstrated the lowest E_g of 2.35 eV. Thus, incorporating N in the TiO$_2$ matrix not only led to a red shift (towards visible light) but also narrowed the band gap.

Understanding how N-doping into the TiO$_2$ structure affects the rate of excitons is crucial; the PL spectra of the as-prepared materials are illustrated (Figure 3c). It is noted that all the doped materials exhibited a lower PL intensity in the range of 350–550 nm than unmodified sample, N-0. Displaying lower PL value by N/TiO$_2$ means they have lower charge carrier recombination rates which subsequently leads to high accessible e^-/h^+ density. Particularly, NT-A has recorded the lowest PL intensity due to the A/R heterojunction through which the e^-/h^+ can be easily separated unlike the other monoanatase phase. Consequently, this visible light-active material could perform better photocatalytic activity.

3.4. Evaluation of Sunlight-Driven Degradation

RhB has become a common deleterious environmental pollutant. As shown (Figure 4a,b), the concentration and characteristic RhB peak intensity are reduced as the function
of irradiation time. Particularly, NT-A displayed the highest photocatalytic efficiency, 99%, within 300 min sunlight irradiation (Figure 4c). It is noted that the RhB degradation performance was in the following order: NT-A > NT-N > N-0 > NT-Ar. Moreover, according to the photodegradation kinetics (Figure 4d), NT-A had the highest apparent rate constant (0.0158 min⁻¹) which is twice of the bare TiO₂. Such enhanced RhB decolouration over NT-A surface is ascribed to its higher degree of crystallinity, formation of A/R heterojunctions, lower recombination rate and higher accessible e⁻/h⁺ density, and higher aqueous-disperse character.

Figure 4. (a) UV-Vis spectra of RhB solutions after their respective irradiation time over NT-A; (b) RhB degradation rate under sunlight; (c) RhB photodegradation performance under 300 min irradiation; and (d) pseudo first order of as-synthesized catalysts.

4. Conclusions

Visible active N-doped titania nanomaterials were successfully prepared via sol-gel method using guanidinium chloride as N-source. The N/TiO₂ powders were optimized at different annealing gas types (air, argon, nitrogen) which profoundly influenced their physicochemical and photocatalytic properties. Among the variety as-obtained photocatalysts, the N/TiO₂ annealed in air displayed the highest RhB degradation performance (99%) within 5 hrs sunlight irradiation. This improved catalytic activity is mainly ascribed to the N-introduction into TiO₂ structure that led to higher crystallinity, optimal anatase/rutile phase composition, and well separated charge carriers.

Author Contributions:

Funding: This research was funded by The World Academy of Sciences, Italy (CSIR-TWAS, FR No.: 3240293587), The Centre for Science & Technology of the Non-aligned and Other Developing Countries, India (RTF-DCS, No. NAM-05/74/16), and Mekelle University, Ethiopia (PG/CNCN/PhD/MU-NMBU/024/2019).

Acknowledgments: The authors express their sincere acknowledges to CSIR-NIIST, IIT Madras, Ethiopian Ministry of Education, and Mekelle University.
Conflicts of Interest: The authors declare no conflict of interest.

References

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.