

The 4th International Online Conference on Nanomaterials (IOCN 2023)

Preparation of mesoporous bicrystalline N-doped TiO₂ nanomaterials for sustainable RhB degradation under sunlight

Elias Assayehegn^{1,2,*} and Abraha Tadese Giday^{1,*}

¹Department of Chemistry, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

²Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India

E-mail: assaye98@gmail.com (E.A), abraha.tadesse@mu.edu.et (A.T)

May, 2023

Outline

- Introduction
- Methodology
- Result and discussion
- Acknowledgment

Introduction

- Water is the prime necessity for *all living beings*.
- It covers 75% of the earth's surface, less than 1% of these can be utilized as drinking water....
- A growing *number of toxic contaminants* are being discharged to water supplies in *both developing* and *industrialized nations*.

The Promising material, Photocatalyst

- Photocatalysts have received significant attention
 - ✓ are material can perform light-induced chemical reactions <u>e.g.</u> TiO₂, Fe₂O₃, ZnO, WO₃, CdS and SrTiO₃
 - The advantages of nano-photocatalysts over conventional
 - ✓ high specific surface area
 - ✓ faster adsorption equilibrium
 - ✓ small diffusion resistance
 - ✓ high retention reusability character
 - ✓ Use the cheapest source of energy, Sunlight
 - How it works...

- TiO₂ is the most dominant and promising, due to
 - chemically stable, photostability
 nontoxic, abundant and cheap
 suitable band alignments
- Commercially as P25 (Degussa)

- However, TiO₂ owns
 - ✓ large band gap- needs UV
 - ✓ low solar energy usage
 - ✓ slow charge mobility
 - \checkmark high recombination rate
- Limits its practical applications

- The development of visible light TiO₂ photocatalyst
 - Band Gap Engineering... <u>Eg</u>. doping, coupling, Sensitizing
 - Surface Engineering... Eg. defect formation

The main research focus are

- ✓ To prepare visible active N-doped TiO₂ nanomaterial
- To study the effect of annealing gas type on physicochemical properties and photocatalytic active against Rhodamine B (RhB)

Preparation Methodology

Result and Discussion

XRD

- Both NT-Ar and NT-N (which were prepared in Ar, and N₂ gas, respectively) have
 98% anatase phase (JCPDS: 21-1272) like N-0.
- Whereas NT-A, which was prepared in atmospheric air, has a mixture of 53% anatase and 44% rutile phases.
- The difference in gas environment influences the degree of crystallinity and particle size.

Figure 1 XRD data of as-prepared nanomaterials (A: anatase, R: rutile).

Morphology

Figure FESEM images of N-0 (a), NT-Ar (b), NT-N (c), NT-A (d); and EDAX of NT-A (e) with its elemental mapping of Ti (f), O (g), N (h).

✤ N/TiO₂ has a spherical shape with some aggregation

N was effectively doped and homogeneously distributed in the crystal MU 9

Optical response

The N-0 absorbs in the UV region (~ 400 nm).

The N/TiO₂ have two peaks: at ~ 420 nm, and 420-600 nm, enhancing their visible absorption

The N/TiO₂ samples showed a red shift unlike the undoped.

K-M plot (b) all the N/TiO₂ materials exhibited lower band gap energy than TiO₂; NT-N particularly demonstrated the lowest of 2.35 eV.

 $\label{eq:photon Energy (eV)} Figure UV-Vis spectra (b), K-M plot (b) of obtained N/TiO_2 nanomaterials.$

Photoluminescence

All the N/TiO₂ samples have lower PL peak than the pure TiO₂

revealing the introduction of the N species in the TiO₂ crystal lowers the photo-generated charge carriers' recombination rate

Figure Photoluminescence spectra of obtained N/TiO₂ nanomaterials.

Photocatalytic Activity

<u>Conditions:</u>

- Catalysts Weight: 50 mg
- Rh B Concentration: 20 ppm
- MB Volume: 200 mL
- Light Source: Sun light irradiation at CSIR-NIIST Trivandrum (8°31' N, 76°56' E) the month of *January* (having Solar irradiance ~ 240 W m⁻², Temp. 25.5 °C, and 66.5% humidity)
- Photoreaction Time: 30 min adsorption and 5 Hrs (11 AM to 4 PM)
- <u>NB</u>: The change in the characteristic absorption band of **Rh B 552 nm** was used to calculate the photodegradation efficiency

Figure (a) RhB degradation rate under sunlight; (b) RhB photodegradation performance under 300 min irradiation; (c) pseudo first order of as-synthesized catalysts

- The concentration and characteristic RhB peak intensity are reduced as the function of irradiation time.
- Particularly, NT-A (the catalyst annealed in air) displayed the highest photocatalytic efficiency (99%) within 300 min sunlight irradiation.
- The RhB degradation performance was in the following order: NT-A (in air) > NT-N (in nitrogen) > N-0 > NT-Ar (in argon)

Conclusion

- The N/TiO₂ powders were optimized at different annealing gas types (air, argon, nitrogen) which profoundly influenced their physicochemical and photocatalytical properties.
- Notably, the sample prepared in air demonstrated the highest degradation performance (99%) with the highest apparent rate constant (0.0158 min⁻¹) which is twice faster than the undoped TiO₂.
- Such outstanding performance is attributed to the synergistic effect of N doping and its optimal anatase/rutile phase which led to higher specific surface area, higher light absorption capacity, lower band gap energy, and lower charge carriers recombination.
- Such visible active dual phase N/TiO₂ photocatalysts will have practical applications in photocatalysis, photoelectrochemical, and photoelectric areas.

Acknowledgment

THE WORLD ACADEMY OF SCIENCES

for the advancement of science in developing countries

14/03/2023 MU