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Abstract: This paper proposes a model for the dependence of heat capacity of thin metal films on 

the temperature and directly on the number of atomic layers in these films. Model representations 

are based on the principles of statistical physics for solids and concepts of the distribution of prin-

cipal quantum numbers in the system of oscillators distributed in solids at high temperatures, i.e., 

Bose-Einstein distribution. The calculations were performed based on the comparison of the Helm-

holtz free energy values for the various configurations of films and the number of layers in them. 

The main tool for the model implementation was the formation and further calculation of the parti-

tion function being an expression of the distribution of principal quantum numbers in the complex 

system of a thin film. Calculations showed the existence of the optimal film thickness at which the 

maximum heat capacity was achieved. The calculations were performed based on a comparison of 

the values of the Helmholtz free energy for different film configurations and the number of layers 

in them. The main tool for implementing the model was the formation and further calculation of the 

partition function, which was an expression of the distribution of principal quantum numbers in the 

complex system of a thin film. The calculation results show the presence of 15–20% increase in the 

heat capacity of thin films corresponding to 400–600 atomic layers from the Dulong-Petit law, i.e., 

exceeding the heat capacity values in comparison with bulk objects for a certain temperature range. 

The heat capacity reaches the highest values in thin films of 30–50 atomic layers in thickness and 

~2.0 times exceeds the value of 3R. 

Keywords: thin films; heat capacity; temperature; thin film thickness; Debye temperature; quantum 

numbers; oscillators 

 

1. Introduction 

The development of microelectronic devices is currently associated with the creation 

of new materials of small size [1], of the order of nanometers. Microelectronic devices 

based on thin films are widely used in various industries [2], for example, in the manu-

facturing of printed circuit boards, microprocessors, laminated structures, and applica-

tion of the coatings to increase the corrosion- and wear resistance of parts, etc. 

Performance capabilities of microelectronic systems depend on the thermal charac-

teristics of thin film structures [1]. Physical properties of materials of such dimensions 

may vary several times relative to their bulk properties [3]. Accurate measurement of the 

thermophysical properties of individual thin films is important for the modeling and pre-

diction of microsystem thermal characteristics [1]. 

Theoretical developments of thin film heat capacity dependence on the temperature 

and thickness at high temperatures are required to estimate the volume expansion coeffi-

cients from the Grüneisen ratios. When creating combined laminated structures with the 

use of metal thin films, it will allow synchronizing their expansion in accordance with 
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temperature changes. Thus, any delaminations, deformations of structures and, as a re-

sult, their failure can be avoided. 

Experimental studies show higher values of the dependence of the thin film heat ca-

pacity compared to that of bulk samples [4,5]. Experimental data also show that, in addi-

tion to the temperature dependence, the heat capacity of thin films rises with the decrease 

in the film thickness [6,7], and its values exceed the heat capacity of bulk samples. 

Along with the literature data for the experimental determination of the heat capacity 

of thin films [4–10], there are also the theories determining the heat capacity of thin films 

at low temperatures [11–14]. 

However, theoretical determination of the dependence of thin film heat capacity on 

the temperature and thickness at high temperatures is still little studied. The paper [15] 

investigates the dependence of the Grüneisen parameter on film thickness and tempera-

ture via theoretical modeling and molecular dynamics simulations. This paper also ex-

plores the temperature dependence and dependence on thickness of the heat capacity of 

thin films, in order to calculate the Grüneisen parameter. However, calculations in [15] 

assume that the values of thin film heat capacity at the temperatures close to Debye tem-

peratures are constant. This paper proposes an original model of the processes of for-

mation of thin film heat capacity and description of the heat capacity dependence on the 

film thickness, i.e., on the number of atomic layers. The model in our study predicts a 

significant change in the heat capacity of thin films depending on the thickness at temper-

atures close to the Debye temperature. The model also assumes a change in the tempera-

ture dependence of the thin film heat capacity from the Dulong-Petit law. These circum-

stances agree with the experimental data [4–7]. 

2. Modeling of Heat Capacity of Thin Films 

The laminated structure of thin films is described using the formalism of oscillating 

structures, i.e., atomic layers of films poorly interacting with each other. Distribution of 

energies over the corresponding oscillators in this structure obeys the Bose-Einstein dis-

tribution [16]. We also assume that the Helmholtz free energy can be described in terms 

of partition functions used in the Boltzmann distribution [16]. 

According to the known concepts [16], free energy of a system of oscillating struc-

tures (in this case, atomic layers in crystal objects) can be represented as 

𝐹 = −𝑇 ∑ 𝑙𝑛 ∑ 𝑒𝑥𝑝 (−
𝑠ℏ𝜔𝑎

𝑇
)∞

𝑠𝑎   (1) 

where T—temperature, ℏ—Planck’s constant , a—summation over the layers of the crystal 

system, ωa—typical oscillation frequency in layer a, summation over s reflects the energy 

distribution over oscillators distributed in layer a corresponding to the distribution of 

principal quantum numbers. Since this distribution at high temperatures obeys the Bose-

Einstein distribution, summation is done from 1 to ∞. Further, when we use the technique 

applied in the derivation of the Einstein’s formula [17] 

∑ 𝑒𝑥𝑝 (−
𝑠ℏ𝜔𝑎

𝑇
)∞

𝑠=1 = ∑ 𝑥𝑠∞
𝑠=1 =

1

1−𝑥
, where 𝑥 = 𝑒𝑥𝑝 (−

ℏ𝜔𝑎

𝑇
),  (2) 

The known expression for the crystal structures of solids is obtained as below [16] 

𝐹 = 𝑇 ∑ 𝑙𝑛 (1 − 𝑒𝑥𝑝 (−
ℏ𝜔𝑎

𝑇
))𝑎   (3) 

Here we are referring to high temperatures T > 273 K, i.e., the relationship T ≫ ℏωa is 

satisfied, and the exponent is expanded in a series up to the first term 
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𝐹 = 𝑇 ∑ 𝑙𝑛
ℏ𝜔𝑎

𝑇𝑎   (4) 

Further, using the expression for the geometric mean in the logarithmic representa-

tion 𝑙𝑛ϖ = (∑ 𝑙𝑛ωn)/𝑛n , we can write 

𝐹 = 𝑇𝑛𝑙𝑛
ℏ𝜛

𝑇
 (5) 

where ϖ—geometric mean frequency, n—number of layers over which the averaging is 

performed. 

Then, in accordance with the Debye temperature concepts, Θ = ℏωD, where ωD—the 

Debye frequency. It should be emphasized that the Debye temperature reflects the thermal 

properties inherent in specific crystal structures of solids. Therefore, considering the geo-

metric mean frequency as ℏ𝝕 =
ℏ𝝎𝑫

𝒏
=

𝚯

𝒏
 we can write 

𝐹 = 𝑇𝑛𝑙𝑛
Θ

𝑛𝑇
 (6) 

Next, when we use the Landau formalism, the expression for free energy is formed 

based on other considerations. To do this, we write the expression for the Boltzmann free 

energy of a certain system comprising n oscillators—n oscillating layers, expressed in 

terms of the partition function 

𝐹 = −𝑇𝑙𝑛 [
(∑ exp (−

ℇ𝑎
𝑇

)𝑎 )
𝑛

𝑛!
] = −𝑇𝑛𝑙𝑛

𝑒

𝑛
∑ 𝑒𝑥𝑝 (−

𝜀𝑎

𝑇
)𝑎   (7) 

The division by n! is introduced in (7) proceeding from the assumption of indistin-

guishability of oscillators in the oscillating system as a whole. Further, (7) can be written 

as 

𝐹 = −𝑇𝑛𝑙𝑛
𝑒

𝑛
∫ 𝑒𝑥𝑝 (−

𝜀(𝑝, 𝑞)

𝑇
)

𝜏

0

𝑑𝜏 (8) 

where the sum is replaced by the integral over the phase space τ of coordinates and mo-

menta q an p, e—base of the natural logarithm. 

Selecting in (8) the coordinate component in the phase space [16], we can write 

𝐹 = −𝑇𝑛𝑙𝑛
𝑒𝑉

𝑛
+ 𝑛𝑓(𝑇) (9) 

where V—volume of the system, f(T)—certain function depending on the temperature. 

Using the relationship 𝐸 = 𝐹 + 𝑇𝑆 , 𝑆 = −
𝜕𝐹

𝜕𝑇
 , where E—energy, S—entropy, we obtain 

the expression for the energy and heat capacity 

𝐸 = −𝑛𝑓(𝑇) − 𝑛𝑇
𝑑𝑓(𝑇)

𝑑𝑇
, 𝐶𝑉 =

𝜕𝐸

𝜕𝑇
= −𝑛𝑇

𝑑2𝑓(𝑇)

𝑑𝑇2  (10) 

Expression (10) allows determining the function f(T) per one oscillating structure, by 

solving the equation 

𝐶𝑉

𝑇
𝑑𝑇 = −

𝑑2𝑓(𝑇)

𝑑𝑡2
 (11) 

After successive integration of the second-degree differential equation (11), we obtain 
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𝑓(𝑇) = 𝑇𝐶𝑉𝑙𝑛𝑇 − (𝐶𝑉 + 𝜂)𝑇 + 𝜀0 (12) 

where η—certain integration constant, which definitely depends on the number of oscil-

lators in the system, since the function f(T) as a whole depends on this number. Therefore, 

η is an expression of this dependence on the number of oscillators. In this approximation, 

we present it in the simple form of η∼αn. ε0 is the certain additive initial energy which 

does not depend on the temperature. Further, substituting (12) into (9) and equating both 

expressions for the free energy (6) and (9), we get 

𝑇𝑛𝑙𝑛
Θ

𝑛𝑇
= −𝑇𝑛𝑙𝑛

𝑒𝑉

𝑛
− 𝑇𝑛𝐶𝑉𝑙𝑛𝑇 − (𝐶𝑉 + 𝛼𝑛)𝑛𝑇 + 𝜀0 (13) 

After transformation of (13), we obtain 

𝑙𝑛
Θ

𝑛𝑇
+ 𝑙𝑛

1

𝑛
= −𝑙𝑛𝑒𝑉 − 𝐶𝑉(𝑙𝑛𝑇 + 1 + 𝛼𝑛) + 𝜀0 (14) 

From (14) we get an expression determining the heat capacity of the film depending 

on the number of layers n 

𝑪𝑽 = −
𝒌𝒍𝒏

𝚯
𝒏𝟐𝑻

(𝒍𝒏𝑻𝒆 + 𝜶𝒏)
 (15) 

The integration constants 𝐶~
𝜀0

(𝑙𝑛𝑇𝑒+𝛼𝑛)
 and α are formed by varying from considera-

tions of tendency of CV to the value of 3R, i.e., to the fulfilment of the Dulong-Petit law at 

n→∞. 

Besides, under the sign of the logarithm in expression (14) there is the product eV, 

V—volume under the unit surface of one film layer. If we evaluate the linear size of the 

side as interatomic distance in the crystal lattice of 10−9 m, then the corresponding value is 

V~10−27 m3, a—the constant of the crystal lattice. Taking into account the above estimates 

of the value −𝑙𝑛𝑒𝑉~27𝑙𝑛𝛽, where 𝛽 = 𝑒𝑎, (15) can be rewritten as 

𝐶𝑉 = −
𝑘𝑙𝑛

𝛽Θ
𝑛2𝑇

ln(𝑇𝑒 + 𝛼𝑛)
+ 𝐶 (16) 

where 𝑘~27𝑏(𝑇) , b(T)—correction factor reflecting the temperature dependence of the 

lattice cell expansion, according to our estimates, ~1,2 per each 100 K. The requirement 

applied to the constant C allows us to estimate the parameter α~0,2. 

3. Results and Discussion 

Figure 1 shows the dependence of CV~f(n) for the real values Ɵ~400 K and T~350 K, 

450 K, 550 K, 650 K. Graphical interpretation of results of the studies performed with the 

use of the proposed model representations indicates fairly good interpolation and gener-

alization of the disparate experimental data [4–10]. 
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Figure 1. Dependence of thin film heat capacity on the number of atomic layers of the film and 

temperature: 1—350 K; 2—450 K; 3—550 K; 4—650 K. 

In fact, a number of assumptions used the construction of a model give an oppor-

tunity to adequately explain the origin of the excess heat capacity of thin films and to trace 

the dynamics of changes in the heat capacity depending on the film thickness and tem-

perature. Figure 1 shows a sharp increase in the heat capacity values with the decrease of 

the number of atomic layers in the film and, as a consequence, the excess of 3R values, i.e., 

the Dulong-Petit ratio. Further, when the number of layers increases, the heat capacity 

values approach the values characteristic of bulk structures. The temperature dependence 

of excess heat capacity is most pronounced in thin films of 30–50 atomic layers in thickness 

and ~2 times exceeds the bulk sample heat capacity. The excess heat capacity also occurs 

in thin films of 400–600 layers thick, exceeding the bulk sample heat capacity by a factor 

of 1.15–1.20. These aspects agree well with the experimental data [4–7]. 

Thus, fairly traditional description of the properties of solids based on the represen-

tation of free energy in terms of partition functions, the quantum-mechanical distribution 

of the oscillator energy and corresponding values of the average principal quantum num-

bers, allows us to proceed to the characteristic thoroughly studied, i.e., the Debye temper-

ature. This circumstance gives an opportunity to significantly expand the application of 

the model in terms of predicting the physical properties of thin films of a wide range of 

metallic structures. 

The proposed model representations allow further predicting the temperature de-

pendence of the heat capacity and dependence of the volume expansion coefficient in con-

nection with the Grüneisen law. The degree of approximation of the proposed model can 

be increased using in the calculations the specific values of the volume (10−27 m3) and the 

crystal lattice constant (10−9 m) instead of their generalized parameters, and considering 

the structure of the crystal lattice for a particular material. 

4. Conclusions 

The paper presents a model describing the dependences of thin film heat capacity on 

the temperature and thickness at high temperatures. The presented model uses a limited 

set of parameters allowing to perform the calculations with sufficient quality. The main 

parameter is the Debye temperature and the crystal lattice cell volume. These parameters 

integrally characterize the object of research, greatly expanding the prediction capabilities 

of the presented model. 

According to the model concepts, there is a significant deviation from the Dulong-

Petit law observed in thin films at high temperatures. The heat capacity reaches the highest 
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values for thin films of ~40 atomic layers thick and exceeds the value of 3R by a factor of 

~2.0. 

Thin films of ~600 atomic layers thick demonstrate the excess of 3R values by a factor 

of ~1.15–1.20. With the increase in thickness of thin films, heat capacity values approach 

those of bulk samples. 

The temperature dependence of thin film heat capacity close to quadratic one is ob-

served. 

Original approach proposed in this paper is to study the heat capacity dependence 

directly on the number of layers, instead of the film thickness. It gives an opportunity to 

examine the values of heat capacity and temperature properties of very thin films (5–10 

atomic layers). 
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