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Abstract In the present report it is presented the use of the atom-based linear indices for 

finding functions that discriminate between the tyrosinase inhibitor compounds and 

inactive ones. In this sense, discriminant models were applied and globally good 

classifications of 93.51% and 92.46% were observed for non-stochastic and stochastic 

linear indices best models, respectively, in the training set. The external prediction sets 

had accuracies of 91.67% and 89.44%. In addition, these fitted models were used in the 

screening of new cycloartane compounds isolated from herbal plants. A good behaviour 

is showed between the theoretical and experimental results. These results provided a 

useful tool that can be used in the identification of new tyrosinase inhibitor compounds. 

 

Keywords: TOMOCOMD-CARDD Software, Atom-based Linear Indices, LDA-based 
QSAR Model, Tyrosinase Inhibitor, Cycloartanes, Ligand-based Virtual Screening. 

 

JASV
Cuadro de texto
10th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-10). 1-30 November 2006. http://www.usc.es/congresos/ecsoc/10/ECSOC10.htm & http://www.mdpi.org/ecsoc-10/

JASV
Cuadro de texto
[g005]



Tyrosinase is the key enzyme in melanin biosynthesis, catalyzing the first two steps 

of this pathway: the hydroxylation in the ortho position of tyrosine (monophenolase or 

cresolase activity) and the oxidation of L-DOPA (L-3,4-dihydroxyphenylalanine) to o-

dopaquinone (diphenolase or catecholase activity), both in the presence of molecular 

oxygen. It is a copper protein widely distributed in nature, which shows similar 

structural and functional characteristics when purified from different biological 

sources.1,2,3 

Because of its central role in melanogenesis, tyrosinase is a key target for screening and 

discovery of new inhibitory compounds is underway in the hope of preventing occurring 

these hyperpigmentation disorders.4,5 Compounds such as hydroquinone,6 ascorbic acid 

derivates,7 kojic acid,8 azelaic acid,9 corticosteroids,10 retinoids,11 arbutin12 and others  

have been reported to show the inhibitory efficacy. Although a large number of naturally 

occurring tyrosinase inhibitors have already been described,13 their individual activities 

either are not potent enough to be considered for practical use or safety regulation 

concerning food additives limit their in vivo use. There is therefore, a constant search for 

tyrosinase inhibitors that can be obtained then by either laboratory synthesis14 or 

extraction from plants.15,16 

On the other hand, for pharmaceutical research and development, chemoinformatics 

provides, at present, the tools for ‘rational’ selection/identification and/or 

design/optimization of new chemical entities (NCE), reducing the number of tested 

compounds, compared with conventional trial-and-error methods.17  

Recently, a novel scheme to the rational -in silico- molecular design (or 

selection/identification of chemicals) and to QSAR/QSPR studies has been introduced 

by one of our research group. It is the so-called TOpological MOlecular COMputer 

Design (TOMOCOMD).18 This method has been developed to generate molecular 

descriptors based on the linear algebra theory. This approach has been successfully 

employed in QSPR19,20 and QSAR21,22 studies, including investigations related to nucleic 

acid–drug interactions23 and the fast-track experimental discovery of novel antimalarial 

compounds.24 

The main objective of this research was to find various statistical linear discriminant 

analysis (LDA) models,  using the  non-stochastic (and stochastic) total and atom-type 

linear  indices in order to separate the tyrosinase inhibitor compounds (actives) from 

inactive ones, with the aim to power the early identification of potential tyrosinase 

inhibitors, isolated and characterized from herbal plants.  



In order to assure an adequate extrapolation power for the LDA models, a data set 

with a great molecular diversity was chosen .We have selected 658 compounds for 

making up the data set, 246 with tyrosinase inhibitor activity, considering different 

modes of inhibition, and the rest, 412, having a series of other pharmacological uses25 

(inactives). 

The molecular descriptors, non-stochastic and stochastic atom-based linear indices, 

were calculated using the ‘in house’ TOMOCOMD-CARDD (acronym of the 

Computed-Aided Rational Drug Design) software. The total and local linear indices for 

small-to-medium sized organic compounds have been explained in some detail in the 

literature.26-29  

To compute the linear indices, certain atomic properties (electronegativity, density, 

atomic radius, etc.) can be used in order to differentiate the atoms. The weights used in 

this work are those previously proposed for the calculation of the DRAGON 

descriptors,31-33 i.e., atomic mass (M), atomic polarizability (P), atomic Mulliken 

electronegativity (K), van der Waals atomic volume (V), plus the atomic 

electronegativity in Pauling  scale (G).30 The values of these atomic labels are shown in 

Table 1.30-33    

The names of tyrosinase inhibitor compounds in the database together with their 

experimental data were taken from the literature.34 The molecular structures are also 

given in the literature.34 This dataset can be considered as a helpful tool for all the 

researchers in this field.The chemicals in the database were divided in training and test 

sets with 478 and 180 compounds, respectively. The training set was used to develop the 

discriminant functions, and these were obtained by using the forward stepwise Linear 

Discriminant Analysis (LDA) as implemented in the statistic package STATISTICA.35 

The kth (k≤15) total and atom-type non-stochastic and stochastic linear indices were 

used as independent variables.  

In this sense there were obtained twelve LDA-based QSAR models. The first six 

models used the non-stochastic total and local linear indices (Eqs 1-6) and the last six 

ones, stochastic molecular descriptors (Eqs 7-12). The equations of the models are 

giving in Table 2. On one hand, the first five LDA models in both sets were obtained 

using each one of the five atomic properties used as atomic weights (atomic labels) 

proposed above. On the other, the sixth model in both sets results from combining all the 

proposed weighting schemes. The Wilks’ λ parameter (U-statistic), square Mahalanobis 

distance (D2), and Fisher ratio (F) for the training set are shown in Table 3. These 



statistical parameters together with the linear discriminant canonical statistics: canonical 

regression coefficient (Rcan), and Chi-squared (χ2) measure the quality of the determined 

models. The equations shown to be statistically significant at p-level (p<0.0001).  

 

Table 2. Discriminant Models Obtained with Total and Local Non-Stochastic and 

Stochastic Linear Indices Used in This Study. 

LDA-Based QSAR Models Obtained Using Non-Stochastic Linear Indices 

 
Class = -0.135 -1.077x10-3 Mf3

H (x) +9.710x10-4 Mf4(x) -6.199x10-8 Mf12(x) +7.719x10-10 Mf15(x)  
             –2.899x10-2 Mf0L

H (xE)  -2.250x10-10 Mf15L(xE) -4.857 Mf0L
H (xE-H)  +0456 Mf1L

H (xE-H) -1.715 Mf3L
H (xE-H)           (1)  

               
Class =  0.357 -3.076x10-2 Vf2

H (x) +1.400x10-2 Vf1(x) -5.257x10-5 Vf6(x) -1.895x10-7 Vf11(x) +4.891x10-10 Vf15(x) 
              -5.797x10-2 Vf0L

H (xE) +3.446x10-10 Vf15L(xE) 0.658 Vf0L
H (xE-H) -0.189 Vf1L

H (xE-H) -3.317x10-2 Vf2L
H (xE-H)        (2)  

                      
Class = -6.428x10-2 –3.781x10-4 Pf6

H (x) +5.920x10-2 Pf3(x) -1.062x10-2 Pf4(x) -0.498 Pf0L
H (xE) -0.143 Pf3L

H (xE) 
             +1.589x10-7 Pf13L

H (xE) +0.139 Pf3L(xE) -2.188x10-6 Pf11L(xE) +3.230 Pf0L
H (xE-H) -0.158 Pf3L

H (xE-H)                    (3) 
 
Class = -0.914 +3.594x10-4 Kf6(x) –1.104x10-7 Kf14(x) +2.619x10-8 Kf15(x) -1.320x10-2 Kf4L

H (xE) 
             +1.506x10-2 Kf3L(xE) +9.713x10-4 Kf6L(xE) -2.808 Kf0L

H (xE-H) +2.370 Kf1L
H (xE-H)                                               (4) 

 
Class = -0.929 +2.203x10-4 Gf5

H (x) -2.819x10-6 Gf9(x) +0.486 Gf1L
H (xE) -0.140 Gf3L

H (xE) -1.753x10-3 Gf6L
H (xE) 

             +8.720x10-4 Gf7L
H (xE) +2.226x10-2 Gf4L(xE) +3.753x10-3 Gf5L(xE) -1.481x10-4 Gf8L(xE) -3.417 Gf0L

H (xE-H)  
             +2.557 Gf1L

H (xE-H)                                                                                                                                                 (5) 
     
Class = 0.260 -1.991x10-3 Vf2

H (x) +0.115 Kf1(x) -3.052x10-6 Gf9(x) -6.243x10-2 Vf0L
H (xE) -0.156 Pf3L

H (xE) 
            +1.103x10-7 Mf13L

H (xE) +0.158 Pf3L(xE) +2.251x10-3 Gf5L(xE)-7.716x10-5 Gf8L(xE) +0.225 Mf1L
H(xE-H)  

            -0.152 Vf1L
H(xE-H)                                                                                                                                                   (6) 

 
LDA-Based QSAR Models Obtained Using Stochastic Linear Indices 
 
Class = 0.344 -0.198 Mf1L

H (xE) +6.805x10-2 Mf5L
H (xE) +0.587 Mf6L

H (xE) -0.358 Mf8L
H (xE) +0.132 Mf1L(xE)  

            -0.219 Mf4L(xE) +0.310 Mf1L
H(xE-H) +0.128 Mf5L

H(xE-H) -0.554 Mq13L
H(xE-H)                                                          (7)   

              
Class = 0.272 +0.209 Vf6L

H (xE) -0.453 Vf2L(xE) +0.438 Vf4L(xE) -8.030x10-2 Vf5L(xE) -1.173 Vf12L(xE) +1.580 Vf14L(xE) 
             +1.059 Vf0L

H(xE-H) -0.298 Vf1L
H(xE-H) +0.956 Vf9L

H(xE-H) +0.884 Vf12L
H(xE-H) -1.035 Vf13L

H(xE-H) 
              -0.917 Vf14L

H(xE-H)                                                                                                                                               (8) 
Class = -0.631 -0.785 Pf0

H
 (x) +0.308 Pf4

H
 (x) +0.404 Pf5

H
 (x) -0.214 Pf15

H (x) +0.260 Pf1(x) -0.889 Pf1L
H (xE) 

             -0.843 Pf2L
H (xE) +1.648 Pf14L

H (xE) -6.891 Pf5L
H (xE-H) +12.195 Pf7L

H (xE-H) -5.203 Pf15L
H (xE-H)                           (9)  

                                                                                        
Class = 0.202 +1.253 Kf2L

H (xE) +53.854 Kf13L
H

 (xE) -53.804 Kf15L
H (xE) +1.454 Kf2L(xE)  

             -2.117 Kf6L(xE) -10.146 Kf9L(xE) +9.247 Kf15L(xE) -7.244 Kf0L
H (xE-H) +2.376 Kf1L

H (xE-H) +4.160 Kf4L
H (xE-H)     (10)  

 
Class = -3.556x10-2 +2.022 Gf2L

H (xE) +37.249 Gf13L
H (xE) -37.959 Gf15L

H (xE) -2.272 Gf6L(xE) 
             -3.588 Gf7L(xE) +4.411 Gf13L(xE) -2.798 Gf0L

H (xE-H) +2.073 Gf1L
H (xE-H)                                                             (11)  

   
Class = 0.175 +0.311 Vf6L

H (xE) +32.906 Gf13L
H (xE) -31.996 Gf15L

H (xE) -0.294 Vf2L(xE) -1.103 Gf5L(xE)  
             +0.474 Mf1L

H (xE-H) -0.122 Vf1L
H (xE-H) +2.268 Pf7L

H (xE-H) -0.254 Mf13L
H (xE-H)-0.257 Vf13L

H (xE-H)                  (12)  
                                                                                                         

 

As it can be observed in Table 3 the fitted models with the combination of the 

weighted schemes exhibit   the best results (equations 6 and 12, respectively). These best 

two models correctly classified the 93.51% and 92.46% (accuracy) of the training set. 



The equations showed high Matthews correlation coefficients (C) of 0.86 and 0.84. 

Table 3 also depicts the values of specificity, sensitivity and false positive rate (also 

known as ‘false alarm rate’), statistical parameters very used in QSAR studies.36  

 

Table 3. Prediction Performances and Statistical Parameters for LDA-based QSAR 
Models in the Training Set.  

Modelsa 

Matthews 
Corr. 

Coefficient 
(C) 

Accuracy
‘QTotal’ 

(%) 

Specificity
(%) 

 

Sensitivity
‘hit rate’

(%) 

False 
positive

Rate 
(%) 

Wilks’ 
λ D2 F Chi-Sqr

(χ2) 
Canonical

R 

LDA-based QSAR Models Obtained Using Non-Stochastic Linear Indices 

Eq. 1 (9) 0.80 90.59 86.3 89.6 8.8 0.49 4.46 55.0 340.3 0.72 

Eq. 2 (10) 0.76 88.49 83.3 87.4 10.9 0.48 4.59 50.8 346.9 0.72 

Eq. 3 (10) 0.79 89.75 84.5 89.6 10.2 0.49 4.47 49.5 340.3 0.72 

Eq. 4 (8) 0.79 89.96 85.0 89.6 9.8 0.47 4.70 65.3 353.5 0.73 

Eq. 5 (11) 0.81 91.00 86.5 90.7 8.8 0.45 5.12 51.5 374.1 0.74 

Eq. 6 (11) 0.86 93.51 90 93.4 6.4 0.43 5.68 57.1 401.7 0.76 

LDA-based QSAR Models Obtained Using Stochastic Linear Indices 

Eq. 7 (9) 0.76 88.70 83.4 88.0 10.9 0.47 4.77 58.8 356.8 0.73 

Eq. 8 (12) 0.79 90.17 85.4 89.6 9.5 0.48 4.60 42.3 347.1 0.72 

Eq. 9 (11) 0.77 88.91 83.9 88.0 10.5 0.55 3.48 34.9 282.9 0.67 

Eq. 10 (10) 0.75 88.08 82.5 87.4 11.5 0.48 4.52 50.1 343.1 0.72 

Eq. 11 (8) 0.72 86.61 80.5 87.8 12.9 0.52 3.86 53.7 306.8 0.69 

Eq. 12 (10) 0.84 92.46 88.5 92.4 7.5 0.40 6.33 70.1 431.8 0.77 
aBetween brackets the quantity of variables of the models.  

 

Although the statistical parameters had a good behavior, it is not enough to assure 

the predictive power of the models. For that reason we carried out an external validation 

processes using a test set37,38 and the results are given in Table 3. In this sense, the 

TOMOCOMD-CARRD models (Eqs 6 and 12) show globally good classifications of 

91.67% and 89.44%, respectively, in the prediction set. Furthermore a high value of C 

can be observed in the equations 6 and 12 (see Table 4).  

The classification of cases was performed by means of the posterior classification 

probabilities. By using the models, one compound can then be classified as active, if 

∆P% > 0, being ΔP% = [P(Active) - P(Inactive)]x100 or as inactive otherwise. P(Active) 

and P(Inactive) are the probabilities with which the equations classify a compound as 

active and inactive, respectively. The classification results (including the canonical 

scores) for the database (active and inactive ones) with the models 6 and 12 is given as 



Tables 4-11 of Supplementary Data.34 In addition, we provide a plot with the ∆P% for 

the actives and inactives using the non-stochastic and stochastic linear indices (Figures 1 

and 2). 
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Figure 1. Plot of the ΔP% from Eq. 6 (using non-
stochastic linear indices) for each compound in the 
training and test sets. Compounds 1-183 and 184-246 
are active (tyrosinase inhibitors) in training and test 
sets, respectively; chemicals 247-541 and 542-658 
are inactive (non-inhibitors of tyrosinase) in both 
training and test sets, correspondingly. 

Figure 2. Plot of the ΔP% from Eq. 12 (using 
stochastic linear indices) for each compound in the 
training and test sets. Compounds 1-183 and 184-246 
are active (tyrosinase inhibitors) in training and test 
sets, respectively; chemicals 247-541 and 542-658 are 
inactive (non-inhibitors of tyrosinase) in both training 
and test sets, correspondingly. 

 

On the other hand, the techniques for assaying new compounds on virtual screening can 

predict, ahead of time, the likely result of a many-years biological-properties study. 

Taken into account this consideration we evaluate 75 compounds using the models of 

TOMOCOMD-CARDD approach. The names and structures from these chemicals are 

given in Tables 12 and 13, respectively of Supplementary Data.34 The selected 

compounds are reported in the literature as active/inactive compounds (see the last 

column of Table 12: Ref. of Supplementary Data).34 Together with these, we show the 

results of posterior classification probabilities (and canonical scores) depicted in Table 

14 of Supplementary Data.34 The obtained models, Eqs 6 and 12 shown a overall 

accuracy of  90.66% and 85.33%, correspondingly. The results validate the models for 

the use in the ligand-based virtual screening.39 

The mayor impact in drug discovery is always the identification of novel lead 

compounds. In this sense, another of our research teams has been focused on searching 

for new tyrosinase inhibitors based on trial-and-error methods.40-46 Besides, in this case 

we used the LDA models developed with TOMOCOMD-CARDD molecular descriptors 

in the virtual screening of a  cycloartanes family isolated from herbal plants.  



 
Table 5. Prediction performances for LDA-based QSAR models in the test set. 

Modelsa Matthews Corr. 

Coefficient (C) 

Accuracy 

‘QTotal’ (%) 

Specificity 

(%) 

Sensitivity 

‘hit rate’ (%) 

False positive 

Rate (%) 

LDA-Based QSAR Models Obtained Using Non-Stochastic Linear Indices 

Eq. 1 0.64 83.33 74.63 79.37 14.53 

Eq. 2 0.65 83.33 72.00 85.71 17.95 

Eq. 3 0.73 86.67 75.32 92.06 16.24 

Eq. 4 0.71 86.11 75.68 88.89 15.38 

Eq. 5 0.77 88.89 78.67 93.65 13.68 

Eq. 6 0.82 91.67 86.36 90.48 7.69 

LDA-Based QSAR Models Obtained Using Stochastic Linear Indices 

Eq. 7 0.70 85.56 74.67 88.89 16.24 

Eq. 8 0.82 91.67 90.00 85.71 5.13 

Eq. 9 0.71 86.11 76.39 87.30 14.53 

Eq. 10 0.80 90.56 83.82 90.48 9.40 

Eq. 11 0.76 88.89 82.09 87.30 10.26 

Eq. 12 0.77 89.44 82.35 88.89 10.26 

 

As it can be seen in Table 5, all the discriminant functions classified as actives 

(tyrosinase inhibitors) the new six compounds. In order to corroborate the predictive 

ability of our QSAR models, the chemicals were isolated and an in vitro assay was 

carried out.47  

As it can be observed the theoretical results obtained are in correspondence with the 

evaluated activity (see Table 5). Also the ∆P% values from each obtained models and 

the canonical scores are reported in this table. 

All the chemical structures had activity and one of them C4 (IC50 =13.95 μM) 

showed higher activity than kojic acid (IC50 =16.67μM), the drug used as tyrosinase 

inhibitor reference. The remaining compounds, C1 (IC50 =102.39 μM), C2 (IC50 = 92.25 

μM), C3 (IC50 = 48.92 μM), C5 (IC50 = 54.64 μM), C6 (IC50 = 85.01μM), exhibited a 

mild effect in inhibitory activity against the enzyme. The structures of the compounds 

are depicted in Figure 3. 

The research of tyrosinase inhibitors has become an important area by the role in 

hyperpigmentation and melanogenesis disorders.5 In this case it has been described a 

new approach for the rational selection of new active compounds against the enzyme. 

These models based on TOMOCOMD-CARDD descriptors and pattern recognition 

techniques can identify new chemical structures with tyrosinase activity.  
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Figure 3. Molecular structure of the cycloartane compounds. 

 

A new method is proposed for increasing the speed of  discovering new lead-like 

compounds, as a suitable alternative to the screening and in vitro assay. This was proved 

experimentally through the isolation and characterization of six new compounds with the 

corresponding tyrosinase inhibitory assay.  In this sense it can be said that the 

accumulation of this kind of knowledge will provide a useful clue for the design of 

effective and selective tyrosinase inhibitors.48 



 

Table 4. Results of Ligand-based in silico Screening and Tyrosinase Inhibitory Activities of New Cycloartanes Compounds. 

no* ΔP%a Scoresa ΔP%b Scoresb ΔP%c Scoresc ΔP%d Scoresd ΔP%e Scorese ΔP%f Scoresf 
IC50 ±S.E.M.h 

(in μM) 

99.79 3.26 99.95 -3.92 96.97 2.19 99.98 -4.32 99.43 2.71 99.97 3.74 
C1 

99.80 3.28 99.97 4.29 98.28 2.74 99.66 3.02 99.55 3.19 99.98 3.67 
102.4±0.3 

99.94 3.85 99.98 -4.37 97.95 2.37 99.99 -4.68 99.81 3.19 99.99 4.10 
C2 

99.87 3.46 99.99 4.75 99.02 3.05 99.84 3.37 99.78 3.56 99.99 4.08 
95.3±0.2 

99.95 3.96 99.99 -4.67 96.46 2.11 99.98 -4.47 99.40 2.69 99.99 4.34 
C3 

99.74 3.16 99.99 5.01 99.21 3.16 99.80 3.26 99.68 3.36 99.99 3.87 
48.92±0.08 

99.87 3.51 99.98 -4.23 92.83 1.77 99.94 -3.84 96.94 1.96 99.97 3.79 
C4 

98.61 2.38 99.96 4.08 97.98 2.66 98.64 2.36 97.74 2.36 99.86 2.97 
13.95±0.6 

99.92 3.72 99.98 -4.28 98.70 2.59 99.98 -4.44 99.55 2.82 99.98 3.93 
C5 

99.61 2.96 99.97 4.22 97.77 2.60 99.67 3.03 99.01 2.79 99.95 3.41 
54.6±0.3 

99.92 3.71 99.97 -4.06 99.85 3.61 100.00 -5.09 99.95 3.75 99.99 4.34 
C6 

99.74 3.15 99.91 3.73 98.43 2.79 99.51 2.85 99.81 3.63 99.98 3.79 
85.01±0.08 

*The molecular structures of these chemicals is shown in Figure 3. a,b,c,d,e,fΔP% = [P(Active) - P(Inactive)]x100 as well as canonical scores of each compounds in this set: 1) 

Above in bold, classification of each compounds using the obtained models with non-stochastic linear indices in the following order:  Eq. 1, 2, 3, 4, 5, and 6 and 2) Below in 

italic; classification of each compounds using the obtained models with stochastic linear indices in the following order Eq. 7, 8, 9, 10, 11, and 12. gResults for the 

classification of compounds in this set: 1) Above, classification of each compounds using the obtained models with non-stochastic linear indices in the following order:  Eq. 1, 

2, 3, 4, 5, and 6 and 2) Below; classification of each compounds using the obtained models with stochastic linear indices in the following order Eq. 7, 8, 9, 10, 11, and 12. 

hIC50 are the 50 percent inhibitory concentrations against the enzyme tyrosinase and S.E.M. is the standard error of the mean. 
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