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Abstract: This article discusses the class of Periodic Generalized Poisson Integer-Valued Generalized
Autoregressive Conditional Heteroscedastic (PGPINGARCH) models. The model, in addition
to properly capture the periodic feature in the autocovariance structure, encompasses different
types of dispersions, with this conditional marginal distribution. The main theoretical properties
of this model are developed, in particular, the first two moment periodically stationary conditions,
while the closed form of these moments are derived. Moreover, the existence of the higher order
moment and their closed forms are established. The periodic autocovariance structure is studied. The
estimation is done by the Yule Walker and the Conditional Maximum Likelihood methods and their
performance is shown via an simulation study. Moreover, an application on Campylobacteriosis time
series is provided, which indicates that the proposed models performs better than other models in
the literature.

Keywords: integer-valued GARCH model; Generalized Poisson distribution; periodically correlated
process; periodically stationary condition
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1. Introduction

Since the seminal paper by Ferland et al. (2006) [1] on modelling discrete-valued time
series of counts via the integer-valued generalized autoregressive conditional Heteroscedas-
tic (INGARCH) model, there has been thereon several notable contributions in this field
Zhu (2008) [2], Zhu (2009) [3], Fokianos et al. (2009) [4], Fokianos and Fried (2010) [5] and
Doukhan et al. (2020) [6]. In particular, in Zhu (2011) [7] and Zhu (2012a)–(2012c) [8–10],
the INGARCH time series models with different probability deviates that include Poisson,
Negative-Binomial, Generalized Poisson, COM-Poisson and among other models have
extensively explored. The general way of writing the INGARCH model of order p and q is

Xt|Xt−1, Xt−2,...  D(µt, ηt),
µt = α0,t + ∑

p
i=1 αi,tXt−i + ∑

q
j=1 β j,tµt−j,

D is the probability model and µt and ηt are the link or mean predictor functions and the
dispersion parameter respectively. Of course, the INARCH process can be obtained as a
special case. This approach of modelling the time series of counts can be viewed as a suitable
alternative to the thinning-based integer-valued autoregressive process (INAR) described
in McKenzie (1986) [11], McKenzie (1988) [12], Al-Osh (1987) [13] and Weiß (2018) [14] and
just to name some few. In fact, as argued by Zhu (2012a) [8], the INGARCH provides a
better framework to model the discrete valued series as such class does not impose any
innovation series distributions while ensures that the counting series follow the required
distribution. As illustrated in Zhu (2012a) [8], the INGARCH yields better Akaike informa-
tion criteria than the INAR type processes. Due to these merits, the INGARCH processes
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achieve a wider variety of application domains that comprise of series of varied levels of
over-or under-dispersion.

To render the INGARCH process more flexible, this paper proposes to explore the peri-
odicity feature often observed in integer-valued time series applications, in the INGARCH
process and set up a new periodic INGARCH type model. In the same direction, Bentarzi
and Bentarzi (2017) [15] proposed a periodic Poisson INGARCH. However, the Poisson
distribution is not usually suitable for modeling overdispersion and underdispersion time
series. As a natural extension of the Poisson distribution, the Generalized Poisson distri-
bution introduced by Consul and Jain (1973) [16], Consul (1989) [17], is quite flexible and
allows for both overdispersion and underdispersion. On the other hand, as mentioned
by Zhu (2012b) [9], the Double Poisson distribution (DP) introduced by Efron (1986) [18],
which deal underdispersion phenomena is difficult to be used due to the fact that the DP
distribution does not well studied, thus many properties of the model are difficult to be
established. However, for the overdispersion phenomena, the Negative Binomial distribu-
tion (NB) is not usually suitable due to the integer valued first parameter, it follows that
the joint maximum likelihood estimator (MLE) of this parameter and other parameters,
can be obtained.

In this sense, we propose a Periodic Generalized Poisson INGARCH model, whose con-
ditional distribution encompasses different dispersion. Moreover, the proposed periodic model
reduces to the aperiodic GPINGARCH model introduced by Zhu (2012), while for the pure
Poisson case, it reduces to the PINGARCH introduced by Bentarzi and Bentarzi (2017) [15].

The rest of the paper is organized as follows: Section 2 provide the definition of the
class of Periodic Generalized Poisson INGARCH models. Section 3 presents the necessary
and sufficient periodically stationary conditions. Furthermore, the closed-form expressions
of the first two moments are obtained, under these conditions. The existence of higher
moments and their calculations are considered in Section 4. Section 5 deals with the study
of the autocovariance structure of the underlying model. Section 6 focuses on the estimation
of the periodic unknown parameters using the Yule-Walker method (YW) method and the
Conditional Maximum Likelihood (CML) method. In Section 7, the performance of the
proposed estimation methods is shown via a simulation study and presents a comparative
analysis in the context of monthly number of infections by Campylobacteriosis modeling
with discussion of the model adequacy. Finally, some conclusions are given in Section 8.

2. Notations, Definitions and Main Assumptions

A periodically correlated Integer-Valued process {Xt, t ∈ Z} in the sense of Gladyshev
(1963) [19], with period S (where S ≥ 2), is said to satisfy a Periodic Generalized Poisson
Integer-Valued Generalized Autoregressive Conditional Heteroscedastic model, with orders
p and q, noted PGPINGARCHS(p, q), if it the following form

Xt|Ft−1  GP(λ∗t , κt),
λ∗t

(1−κt)
= λt = α0,t + ∑

p
i=1 αi,tXt−i + ∑

q
j=1 β j,tλt−j,

(1)

where the parameters α0,t > 0, αi,t ≥ 0, β j,t ≥ 0, i = 1, . . . , p, j = 1, . . . , q with p ≥ 1,
q ≥ 0 and max(−1,−λ∗t /4) < κt < 1, are periodic in t with period S, i.e., α0,t+rS = α0,t,
αi,t+rS = αi,t, β j,t+rS = β j,t and κt+rS = κt, ∀t, r ∈ Z. Ft−1 denotes, as usually, the
σ-field generated by {Xt−1, Xt−2, . . .}. Particularly, we have, for p = q = 1, the periodic
GPINGARCHS(1, 1) model, which is the object in this paper:

Xt|Ft−1  GP(λ∗t , κt),
λ∗t

(1−κt)
= λt = α0,t + α1,tXt−1 + βtλt−1.

(2)
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where the parameters α0,t, α1,t and βt are periodic in t with period S, i.e., α0,t+rS = α0,t,
α1,t+rS = α1,t, βt+rS = βt and κt+rS = κt, ∀t, r ∈ Z. Letting t = s + τS for s = 1, 2, . . . , S
and τ ∈ Z, the last model (2) can be rewritten in the equivalent form

Xs+τS|Fs−1+τS  GP
(
λ∗s+τS, κs

)
,

λ∗s+τS
(1−κs)

= λs+τS = α0,s + α1,sXs−1+τS + βsλs−1+τS.
(3)

Clearly, when q = 0, the model (1) is denoted by PGPINARCHS(p). When κt, the
above model reduces to Poisson PINGARCHS(1, 1) studied by Bentarzi and Bentarzi
(2017) [15]. This model extends the following time-invariant (i.e., S = 1) GPINGARCH(1, 1)
studied by Zhu (2012b) [9] to the time periodic case,

Xt|Ft−1  GP(λ∗t , κ),
λ∗t

(1−κ)
= λt = α0 + α1Xt−1 + βλt−1.

(4)

3. Periodically Stationary Conditions

This section is devoted to establish the periodic stationarity conditions on the param-
eters of the GPINGARCHS(1, 1) model (2), with respect to the first two order moments.
Furthermore, under these conditions, the closed forms of the unconditional mean and the
unconditional variance are obtained.

3.1. Periodically Stationary in the Mean

Proposition 1. The periodically correlated integer-valued process {Xt, t ∈ Z}, satisfying the
periodic GPINGARCHS(1, 1) model (2), is periodically stationary, in the mean, if and only if,

ΠS
i=1(α1,i + βi) < 1. (5)

Furthermore, the closed-form of the mean µX,s = E(Xs), s = 1, . . . , S, of such process is,
under this condition, given by:

µX,s =
[

I −ΠS
i=1(α1,i + βi)

]−1
∑S

j=1

[
Πj−1

i=1(α1,s−i+1 + βs−i+1)
]
α0,s−j+1, (6)

with the convention Πj
i=1xi = 1 if j < 1.

In the particular case of periodic GPINARCHS(1) model (4), i.e., (q = 0), the results
of this proposition can be presented by the following corollary.

Corollary 1. The periodically correlated process {Xt, t ∈ Z} satisfying the periodic
GPINARCHS(1) model, is periodically stationary in the mean if and only if

ΠS
i=1α1,i < 1. (7)

Furthermore, the closed-form of the mean µX,s, s = 1, . . . , S, is then given by:

µX,s =
[

I −ΠS
i=1α1,i

]−1
∑S

j=1

[
Πj−1

i=1ΠS
i=1α1,i

]
α0,s−j+1, (8)

Proof of Proposition 1. The unconditional mean of the periodically correlated process
{Xt, t ∈ Z}, satisfying a GPINGARCHS(1, 1) model (2) is given by

µX,s = E(Xt) = E(E(Xt|Ft−1 )) = E(λt)
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where

E(Xt) = α0,t + α1,tE(Xt−1) + βtE(λt−1)

= ψ1,tE(Xt−1) + α0,t

where ψ1,t = (α1,t + βt). Substituting successively, m times, in the last equation, we obtain,

µX,t = (Πm
i=1ψ1,t−i+1)µX,t−m + ∑m

j=1

(
Πj−1

i=1ψ1,t−i+1

)
α0,t−j+1.

Replacing m by t and letting t = s+ τS, s = 1, 2, . . . , S and τ ∈ Z, while taking account
of the periodicity of the parameters, one can obtain

µX,s+τS =
(

Πs+τS
i=1 ψ1,s−i+1

)
µX,s+τS−s+τS + ∑s+τS

j=1

(
Πj−1

i=1ψ1,s−i+1

)
α0,s−j+1,

=
(

Πs+τS
i=1 ψ1,s−i+1

)
µX,0 + ∑s+τS

j=1

(
Πj−1

i=1ψ1,s−i+1

)
α0,s−j+1,

=
(

ΠS
i=1ψ1,i

)τ
(Πs

i=1ψ1,s−i+1)µX,0 + ∑τS
j=1

(
Πj−1

i=1ψ1,s−i+1

)
α0,s−j+1

+ ∑s
j=1

(
Πj−1+τS

i=1 ψ1,s−i+1

)
α0,s−j+1,

=
(

ΠS
i=1ψ1,i

)τ
(Πs

i=1ψ1,s−i+1)µX,0 + ∑τ−1
k=0

(
ΠS

i=1ψ1,i

)k
∑S

j=1

(
Πj−1

i=1ψ1,s−i+1

)
α0,s−j+1

+
(

ΠS
i=1ψ1,i

)τ

∑s
j=1

(
Πj−1

i=1ψ1,s−i+1

)
α0,s−j+1,

=
(

ΠS
i=1ψ1,i

)τ[
(Πs

i=1ψ1,s−i+1)µX,0 + ∑s
j=1

(
Πj−1

i=1ψ1,s−i+1

)
α0,s−j+1

]
+
(

1−ΠS
i=1ψ1,i

)−1[
1−

(
ΠS

i=1ψ1,i

)τ]
∑S

j=1

(
Πj

i=1ψ1,s−i+1

)
α0,s−j+1.

Letting t→ ∞, i.e., τ → ∞, then µX,s for s = 1, . . . , S converge to(
1−ΠS

i=1ψ1,i

)−1
∑S

j=1

(
Πj

i=1ψ1,s−i+1

)
α0,s−j+1,

if and only if ΠS
i=1ψ1,i < 1.

3.2. Periodically Stationary in the Second Order

Proposition 2. The integer-valued periodically stationary in the mean process {Xt, t ∈ Z}, satis-
fying the periodic GPINGARCHS(1, 1) model (2) , is periodically stationary in the second order,
if and only if,

ΠS
i=1(α1,i + βi)

2 < 1. (9)

Furthermore, the closed-form of the variances γ
(s)
X (0) of such process and γ

(s)
λ (0), s = 1, . . . , S,

are, under this condition, given respectively by:

γ
(s)
X (0) = ϕ2

s µX,s +
(

1−ΠS
i=1ψ2,i

)−1
∑S

j=1

(
Πj

i=1ψ2,s−i+1

)
Fs−j+1, (10)

γ
(s)
λ (0) =

(
1−ΠS

i=1ψ2,i

)−1
∑S

j=1

(
Πj

i=1ψ2,s−i+1

)
Λs−j+1, (11)

where ψ2,t = (α1,t + βt)
2, ϕs = (1− κs)

−1 and Fs = α2
1,s ϕ2

s−1µλ,s−1, with the convention

Πj
i=1xi = 1 if j < 1.

The following corollary, gives the periodic stationarity in second order for the particu-
lar case of periodic GPINARCHS(1) model (4).
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Corollary 2. The periodically correlated integer-valued process {Xt, t ∈ Z} stationary in the
mean, satisfying the periodic GPINARCHS(1) model (4) , is periodically stationary in the second
order, if and only if,

ΠS
i=1α2

1,i < 1. (12)

Furthermore, the closed-form of the variances γ
(s)
X (0) of such process and γ

(s)
λ (0), s = 1, . . . , S,

are, under this condition, given respectively by:

γ
(s)
X (0) = ϕ2

s µX,s +
(

1−ΠS
i=1α2

1,s

)−1[
1−

(
ΠS

i=1α2
1,s

)τ]
∑S

j=1

(
Πj

i=1α2
1,s−i+1

)
Fs−j+1, (13)

γ
(s)
λ (0) =

(
1−ΠS

i=1α2
1,s

)−1[
1−

(
ΠS

i=1α2
1,s

)τ]
∑S

j=1

(
Πj

i=1α2
1,s−i+1

)
Fs−j+1. (14)

Proof of Proposition 2. The unconditional variance of the periodically correlated process
{Xt, t ∈ Z}, satisfying a GPINGARCHS(1, 1) model (2) is given by

Var(Xt) = Var(E(Xt|Ft−1 )) +E(Var(Xt|Ft−1 )),

= ϕ2
tE(λt) + Var(λt),

where ϕt = (1− κt)
−1. The last equation can be written in the following equivalent form

γ
(s)
X (0) = ϕ2

s µX,s + γ
(s)
λ (0). (15)

The mean µX,s was calculated previously and is given by (6), then we need to calculate

γ
(s)
λ (0), which is given as follows

γ
(t)
λ (0) = Var(α0,t + α1,tXt−1 + βtλt−1),

= Var(α1,tXt−1) + Var(βtλt−1) + 2Cov(α1,tXt−1, βtλt−1),

= α2
1,tVar(Xt−1) + β2

t Var(λt−1) + 2α1,tβtVar(λt−1),

= (α1,t + βt)
2γ

(t−1)
λ (0) + α2

1,t ϕ2
t−1µλ,t−1,

= ψ2,tγ
(t−1)
λ (0) + Ft,

where ψ2,t = (α1,t + βt)
2 and Ft = α2

1,t ϕ 2
t−1µλ,t−1. By iterating m times, we obtain

γ
(t)
λ (0) = (Πm

i=1ψ2,t−i+1)γ
(t−m)
λ (0) + ∑m

j=1

(
Πj−1

i=1ψ2,t−i+1

)
Ft−j+1.

Replacing m by t and letting t = s+ τS, s = 1, 2, . . . , S and τ ∈ Z, while taking account
of the periodicity of the parameters and following the same steps of Proof of Proposition 1,
we obtain

γ
(s+τS)
λ (0) =

(
Πs+τS

i=1 ψ2,s−i+1

)
γ
(0)
λ (0) + ∑s+τS

j=1

(
Πj−1

i=1ψ2,s−i+1

)
Fs−j+1,

=
(

ΠS
i=1ψ2,i

)τ[
(Πs

i=1ψ2,s−i+1)γ
(0)
λ (0) + ∑s

j=1

(
Πj−1

i=1ψ2,s−i+1

)
Fs−j+1

]
+
(

1−ΠS
i=1ψ2,i

)−1[
1−

(
ΠS

i=1ψ2,i

)τ]
∑S

j=1

(
Πj

i=1ψ2,s−i+1

)
Fs−j+1.

Therefore, the last equation converge, as τ → ∞ to

γ
(s)
λ (0) =

(
1−ΠS

i=1ψ2,i

)−1
∑S

j=1

(
Πj

i=1ψ2,s−i+1

)
Fs−j+1,

if and only if ΠS
i=1ψ2,i < 1. Then, the variance γ

(s)
X (0) is given by

γ
(s)
X (0) = ϕ2

s µX,s +
(

1−ΠS
i=1ψ2,i

)−1
∑S

j=1

(
Πj

i=1ψ2,s−i+1

)
Fs−j+1,
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where ψ2,s = (α1,s + βs)
2, ϕ s = (1− κs)

−1 and Fs = α2
1,s ϕ 2

s−1µλ,s−1.

4. Existence of Higher Moments and Their Calculations

In this section, we establish the existence condition of the m-th order moment, E(Xm
t ),

for a second order periodic GPINGARCHS(1, 1) model, satisfying (2). Moreover, under
this condition, the closed form of E(Xm

t ) is obtained. To state this main result, we need

to define the following three m–column vector, µ
(m)
X,t =

(
E(Xm

t ),E(Xm−1
t ), . . . ,E(Xt)

)′
,

Λ(m)
t =

(
λm

t , λm−1
t , . . . , λt

)′
, α

(m)
0,t =

(
αm

0,t, αm−1
0,t , . . . , α0,t

)′
, and the two squared m × m

matrices, Φ(m)
t and Ωm,t, whose elements are given, respectively, for i, j = 1, . . . , m, by

Φ(m)
t =


0 if i > j
ψm−i+1,t if i = j
φ
(m−i+1)
m−j+1,t if i < j

, Ωm,t =


0 if i > j
b(m−i+1)(m−i+1),t if i = j
b(m−i+1)(m−j+1),t if i < j

(16)

where,

φ
(m)
i,t =

(
m
i

)
αm−i

0,t ψi,t + ∑m
j=i+1 ∑j−1

l=j−i K
(m)
i,l+1,j−i,t (17)

K(m)
i,j,l,t =

(
m
i

)(
i
j

)
αm−i

0,t α
j
1,tβ

i−j
t bj(j−l),t−1, (18)

ψi,t = ∑i
j=0

(
i
j

)
α

j
1,tβ

i−j
t bjj,t−1, (19)

where, according to Zhu (2012b) [9], bjl,t is not related to λt, and bjl,t = 1/(1− κt)
l .

Proposition 3. The unconditional m-th moment, µ
(m)
X,t = E(Xm

t ), for the periodically correlated
process {Xt, t ∈ Z} satisfying the periodic GPINGARCHS(1, 1) model, exists and is finite, if
and only if

ΠS
s=1ψm,s < 1, (20)

where ψi,t is given by (19). Furthermore, the closed form of the m-column vectors of the unconditional
m-order moments, µ

(m)
X,t and E(Λ(m)

t ) are given, under this condition, respectively, by

E(Λ(m)
s+τS) =

(
I −ΠS

i=1Φ(m)
s−i+1

)−1
∑S−1

j=0

(
Πj−1

i=1Φ(m)
s−i+1

)
α
(m)
0,s−j, (21)

µ(m)
X,s

= Ωm,s

(
I −ΠS

i=1Φ(m)
s−i+1

)−1
∑S−1

j=0

(
Πj−1

i=1Φ(m)
s−i+1

)
α
(m)
0,s−j. (22)

where the elements of the matrices Φ(m)
s and Ωm,s are given by (16).

Proof of Proposition 3. The conditional m-th moment of λt, i.e., E(λm
t |Ft−2 ) is given by

E(λm
t |Ft−2 ) = ∑m

i=0

(
m
i

)
αm−i

0,t ∑i
j=0

(
i
j

)
α

j
1,tβ

i−j
t λ

i−j
t−1E(X j

t−1|Ft−2 ) (23)

Using (2.5) of Zhu (2012) [9], the j-th moment of a generalized Poisson random
variable, is given by

E(X j
t |Ft−2 ) = ∑j

l=1 bjl,tλ
l
t, (24)
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where bjl,t is not related to λt, and bjl,t = 1/(1− κt)
l . Therefore,

E(λm
t |Ft−2 ) = ∑m

i=0

(
m
i

)
αm−i

0,t ∑i
j=0

(
i
j

)
α

j
1,tβ

i−j
t λ

i−j
t−1 ∑j

l=1 bjl,t−1λl
t−1,

= αm
0,t + ψm,tλ

m
t−1 + ∑m−1

i=1 ∑i
j=0

(
i
j

)
αm−i

0,t α
j
1,tβ

i−j
t bjj,t−1λi

t−1

+ ∑m
i=1 ∑i

j=1 ∑j−1
l=1

(
m
i

)(
i
j

)
αm−i

0,t α
j
1,tβ

i−j
t bjl,t−1λ

i−j+l
t−1 . (25)

Using, the following notation,

ψi,t = ∑i
j=0

(
i
j

)
α

j
1,tβ

i−j
t bjj,t−1, (26)

K(m)
i,j,l,t =

(
m
i

)(
i
j

)
αm−i

0,t α
j
1,tβ

i−j
t bj(j−l),t−1. (27)

The last equation, i.e., (25), can be rewritten in the following form

E(λm
t |Ft−2 ) = αm

0,t + ψm,tλ
m
t−1 + ∑m−1

i=1

(
m
i

)
αm−i

0,t ψi,tλ
i
t−1 ++∑m

i=1 ∑i
j=1 ∑j−1

l=1K
(m)
i,j,l,tλ

i−l
t−1,

Therefore,
E(λm

t |Πt−2 ) = αm
0,t + ψm,tλ

m
t−1 + ∑m−1

i=1 φ
(m)
i,t λi

t−1, (28)

where,

φ
(m)
i,t =

(
m
i

)
αm−i

0,t ψi,t + ∑m
j=i+1 ∑j−1

l=j−i1K
(m)
i,l+1,j−i,t

in which K(m)
i,j,l,t is given previously by (27). Replacing i in (28) by m, m− 1, . . . , 1, we obtain

the following equation
E(Λ(m)

t |Πt−2 ) = Φ(m)
t Λ(m)

t−1 + α
(m)
0,t , (29)

where the column vectors Λ(m)
t and α

(m)
0,t are given respectively by

(
λm

t , λm−1
t , . . . , λt

)′
and(

αm
0,t, αm−1

0,t , . . . , α0,t

)′
, while the m×m matrix Φ(m)

t is given previously by (16).
Iterating the Equation (29), n times, and letting n = kS− 2, we obtain

E(Λ(m)
t |Ft−kS ) =

(
ΠkS−1

i=1 Φ(m)
t−i+1

)
Λ(m)

t−(kS−1) + ∑kS−2
j=0

(
Πj

i=1Φ(m)
t−i+1

)
α
(m)
0,t−j

Replacing t by s + τS s = 1, 2, . . . , S and τ ∈ Z, while taking account of the periodicity
of the column vector α

(m)
0,t and following the same steps of the Proof of Proposition 1,

we obtain

E(Λ(m)
s+τS

∣∣∣Fs−(τ−k)S ) =
(

ΠS
i=1Φ(m)

s−i+1

)k−1[
∑S−1

j=1

(
Πj−1

i=1Φ(m)
s−i+1

)
α
(m)
0,s−j+1 +

(
ΠS−1

i=1 Φ(m)
s−i+1

)
Λ(m)

t−({k−τ}S−1)

]
+∑k−2

l=0

(
ΠS

i=1Φ(m)
s−i+1

)l
∑S

j=1

(
Πj−1

i=1Φ(m)
s−i+1

)
α
(m)
0,s−j+1.

The matrices Φ(m)
s−i+1 for i = 1, . . . , S are diagonal with ψm,s−i+1, ψm−1,s−i+1, . . . , ψ1,s−i+1

as a eigenvalues, then a sufficient condition for the matrix
(

ΠS
i=1Φ(m)

s−i+1

)k−1
to converge

to the null matrix as k→ ∞ is
ΠS

i=1ψm,i < 1,
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where ψi,t is given previously by (26). Therefore, the closed for of the column vector Λ(m)
t

is given, under this condition, by

E(Λ(m)
t ) =

(
I −ΠS

i=1Φ(m)
s−i+1

)−1
∑S−1

j=0

(
Πj−1

i=1Φ(m)
s−i+1

)
α
(m)
0,s−j. (30)

Since the conditional i-th moment, E(X j
t |Ft−1 ), given by (24), the unconditional vector

moments µ
(m)
X,t =

(
E(Xm

t ),E(Xm−1
t ), . . . ,E(Xt)

)′
, as a function of the unconditional vector

moments E(Λ(m)
t ), is given in the matrix following form

µ(m)
X,t

= Ωm,tE(Λ(m)
t ).

where the element of the matrix Ωm,t are given by (16).

Corollary 3. The first fourth unconditional, moments, µ
(4)
X,s of the periodically correlated process

are, under the condition (20) textit, given by

µ(4)
X,s

= Ω4,s

(
I −ΠS

i=1Φ(4)
s−i+1

)−1
∑S−1

j=0

(
Πj−1

i=1Φ(4)
s−i+1

)
α
(4)
0,s−j, (31)

in which

Ω4,s =


b44,s b43,s b42,s b41,s

0 b33,s b32,s b31,s
0 0 b22,s b21,s
0 0 0 b11,s

, Φ(4)
s =


ψ4,s φ

(4)
3,s φ

(4)
2,s φ

(4)
1,s

0 ψ3,s φ
(3)
2,s φ

(3)
1,s

0 0 ψ2,s φ
(2)
1,s

0 0 0 ψ1,s

,

where the elements of the last two matrices can be calculated from (17)–(19).

In the following corollary, we present the Kurtosis and skewness coefficient, which are
in same form of these given by Bentarzi and Bentarzi (2017) [15].

Corollary 4. The Skewness and the Kurtosis coefficients of the periodically correlated process
{Xt, t ∈ Z}, satisfying a periodic GPINGARCHS(1, 1) model (2) , under the condition (20),
are given by

Kurs = µ
∗(4)
X,s /

(
µ
∗(2)
X,s

)2
=
(

µ
(4)
X,s − 4µX,sµ

(3)
X,s + 6µ2

X,sµ
(2)
X,s − 3µ4

X,s

)
/
(

µ
(2)
X,s − µ2

X,s

)2
, (32)

Sks = µ
∗(3)
X,s /

(
µ
∗(2)
X,s

)3/2
=
(

µ
(3)
X,s − 3µX,sµ

(2)
X,s + 2µ3

X,s

)
/
(

µ
(2)
X,s − µ2

X,s

)3/2
, (33)

where, µ
(4)
X,s, µ

(3)
X,s, µ

(2)
X,s and µX,s are given by Corollary (3).

5. Autocovariance Structure

The following proposition establish the autocovariance structure of the process {Xt, t ∈ Z}
satisfying the periodic GPINGARCH(1, 1) model.
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Proposition 4. The periodic autocovariance γ
(s)
X (h), s = 1, 2, . . . , S and h ∈ N∗ of the periodically

correlated integer-valued process {Xt, t ∈ Z} satisfying the periodic GPINGARCHS(1, 1) model
(2) is given as follows:

γ
(s)
X (h) =



ϕ2
s µX,s +

(
1−ΠS

i=1ψ2,i
)−1
[
1−

(
ΠS

i=1ψ2,i
)τ
]

∑S
j=1

(
Πj

i=1ψ2,s−i+1

)
Λs−j+1,

h = 0,

ψ1,sγ
(s−1)
X (0)− βs ϕ2

s−1µX,s−1, h = 1,(
Πh

i=1ψ1,s−i+1

)
γ
(s−h)
X (0), h ≥ 2,

(34)

where ϕ s = (1− κs)
−1, ψ1,s = (α1,s + βs), ψ2,s = (α1,s + βs)

2 and Λs = α2
1,s ϕ 2

s−1µX,s−1.

Proof of Proposition 4. The periodic autocovariance function γ(s)(h), s = 1, 2, . . . , S and
h ∈ N∗ can be calculated for h = 1, as follows

γ
(t)
X (1) = Cov(Xt, Xt−1) = Cov(λt, Xt−1),

= Cov(α0,t + α1,tXt−1 + βtλt−1, Xt−1),

= α1,tCov(Xt−1, Xt−1) + βtCov(λt−1, Xt−1),

= α1,tγ
(t−1)
X (0) + βtγ

(t−1)
λ (0).

Replacing by (15) , in the last equation, we obtain

γ
(t)
X (1) = ψ1,tγ

(t−1)
X (0)− βt ϕ2

t−1µX,t−1. (35)

For h ≥ 2, the autocovariance function γ(s)(h), is given by

γ
(t)
X (h) = Cov(Xt, Xt−h) = Cov(λt, Xt−h),

= α1,tCov(Xt−1, Xt−h) + βtCov(λt−1, Xt−h),

= α1,tγ
(t−1)
X (h− 1) + βtγ

(t−1)
X (h− 1),

= ψ1,tγ
(t−1)
X (h− 1).

Iterating the last equation m times, while replacing m by h, we obtain

γ
(t)
X (h) =

(
Πh

i=1ψ1,t−i+1

)
γ
(t−h)
X (0).

Corollary 5. The periodic autocorrelation functions ρ
(s)
X (h), s = 1, 2, . . . , S and h ∈ N∗ of the peri-

odically correlated integer-valued process {Xt, t ∈ Z} satisfying the periodic GPINGARCHS(1, 1)
model (2) is given by the following

ρ
(s)
X (v + kS) =

(
ΠS

i=1ψ1,i

)k(
Πh−1

i=1 ψ1,s−i+1

)√√√√γ
(s−v)
X (0)

γ
(s)
X (0)

(
ψ1,s−v+1 −

βs−v+1 ϕ2
s−vµX,s−v

γ
(s−v)
X (0)

)
(36)

Proof. The proof is evident.
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Corollary 6. The periodic autocovariance γ
(s)
X (h), s = 1, 2, . . . , S and h ∈ N∗ of the periodically

correlated integer-valued process {Xt, t ∈ Z} satisfying the periodic GPINARCHS(1) model (4)
is given as follows:

γ
(s)
X (h) =


ϕ2

s µX,s +
(

1−ΠS
i=1α2

1,i

)−1[
1−

(
ΠS

i=1α2
1,i

)τ]
∑S

j=1

(
Πj

i=1α2
1,s−i+1

)
Λs−j+1,

h = 0,(
Πh

i=1α1,s−i+1

)
γ
(s−h)
X (0). h ≥ 1,

(37)

6. Parameter Estimation

In the present section, we focus on the estimation of the parameters of the periodic
GPINGARCH(1, 1) model (2) , while considering the Yule-Walker (YW) method and the
Conditional Maximum Likelihood method (CML).

6.1. Yule-Walker Estimation

This paragraph focuses on the estimation, adopting the Yule-Walker estimation
method, of the underlying parameters of the model (2) . Indeed, the following propo-
sition establish the YW estimation.

Proposition 5. The Yule-Walker estimations of the parameters α0,s, α1,s and βs, are given, for
s = 1, 2, . . . , S, as follows:

ψ̂1,s =
γ̂
(s)
X (2)

γ̂
(s−1)
X (1)

, (38)

α̂0,s = µ̂X,s − ψ̂1,sµ̂X,s−1, (39)

β̂s =
γ̂
(s)
X (1)− ψ̂1,sγ̂(s−1)(0)

ϕs−1µ̂X,s−1
, (40)

α̂1,s =
γ̂
(s)
X (2)

γ̂
(s−1)
X (1)

− β̂s, (41)

where µ̂X,s and γ̂
(s)
X (h), s = 1, 2, . . . , S are, respectively, the empirical periodic mean and the

empirical periodic autocovariance function for lag h, (h ≥ 0), at the season s, of the process.

Proof. The proof is evident.

6.2. Conditional Maximum Likelihood Estimation (CML)

Let, the column vector of parameters θs =
(

ϕs, θ∗′s
)′, to be estimated, where θ∗s =(

α′0,s, α′1,s, β′
s

)′
for s = 1, . . . , S and the column vector of observations Xt = (X1, X2, . . . , Xn)

generated for the GPINGARCH(1, 1) model. Then the conditional log likelihood function
is given by

l(θt|Ft−1 ) = Πn
t=1

λt[λt + (ϕt − 1)Xt]
Xt−1 ϕ−Xt

t exp{−[λt + (ϕt − 1)Xt]/ϕt}
Xt!

. (42)

the corresponding log-likelihood function, while letting t = s + τS is

L(θs|Fs−1+τS ) = ∑N−1
τ=0 ∑S

s=1{ln(λs+τS) + (Xs+τS − 1) ln[λs+τS + (ϕs − 1)Xs+τS]

−Xs+τS ln(ϕs)−
λs+τS + (ϕs − 1)Xs+τS

ϕs
− ln(Xs+τS!)

}
(43)
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where λs+τS = α0,s + α1,sXs−1+τS + βsλs−1+τS . The numerical optimization methods are
used to find out the CML estimator ϕ̂

s
. The first derivatives of L(θs|Fs−1+τS ) are given as

∂L
∂ϕs

= ∑N−1
τ=0

{
Xs+τS(Xs+τS − 1)

λs+τS + (ϕs − 1)Xs+τS
− Xs+τS

ϕs
+

Xs+τS − λs+τS
ϕs

}
, (44)

∂L
∂θ∗s

= ∑N−1
τ=0

{
1

λs+τS
+

Xs+τS − 1
λs+τS + (ϕs − 1)Xs+τS

− 1
ϕs

}
∂λs+τS

∂θ∗s
, (45)

where
∂λs+τS

∂α0,s
= 1;

∂λs+τS
∂α1,s

= Xs−1+τS;
∂λs+τS

∂βs
= λs−1+τS.

While the elements of the Hessian matrix Hn(θs) given by

Hn(θt) = −∑n
t=1

∂2L(θt|Ft−1 )

∂θt∂θ′t
− (46)

can be found in Zhu (2012b) [9] with an adaptation to the periodic case. From Zhu
(2012b) [9] and White (1982) [20], the standard errors oft the ML θ̂s estimate, can be com-
puted from the robust sandwich matrix

H−1
n

(
θ̂s

)
Sn

(
θ̂s

)
H−1

n

(
θ̂s

)
(47)

where

Sn(θs) = ∑n
t=1

∂L(θs|Ft−1 )

∂θs

∂L(θs|Ft−1 )

∂θ′s
(48)

and ∂L/∂θs is given by (44) and (45) and ∂2L/∂θs∂θ′s by (3.7) in Zhu (2012b) [9].

7. Application

The first part of this section presents a simulation study to assess the performance of
the presented parameters estimation methods, all the results are based on 1000 independent
replications of Monte Carlo simulations for different sample sizes. In the second part report
an application of the periodic GPINGARCHS(1, 1) model for a dataset on public health
surveillance. The dataset represent the number of infections by Campylobacteriosis in
Quebec-Canada, from January 1990 to October 2000 (Ferland et al. (2006) [1]).

7.1. Simulation Study

In this section, the performance of the Yule Walker and Conditional Maximum Likeli-
hood estimates are studied. We have asses on a variety of sample sizes, generated from two
PGPINGARCH4(1, 1) models. For each model, we consider 1000 Monte Carlo replications.
The true values of parameters of the considered data generating processes, are:

Model 1: θ∗s = ((1, 0.15, 0.1); (2, 0.25, 0.2); (3, 0.35, 0.3); (4, 0.45, 0.4)).
Model 2: θs =

(
κs, θ∗′s

)′ with κs = (0.2, 0.3, 0.4, 0.5) and
θ∗s = ((3, 0.1, 0.35); (4, 0.15, 0.4); (5, 0.2, 0.45); (2, 0.25, 0.5)).

Note that the set of parameters values is selected such that the first order periodic
stationary condition is satisfied. In fact, ΠS

i=1(α1,i + βi) is equal to 0.0621 for Model 1 and
0.1206 for Model 2. Indeed, the parameters κs, s = 1, . . . , S, are assumed to be known for
the first model and and unknown for second one. The mean and root mean square error
(RMSE) of the parameter estimates for the 1000 replications are reported in Tables 1 and 2.

Under both models 1 and 2, we notice that both YW and CML provide consistent
estimates of the various population parameters in comparison with the true values (TV).
However, CML has a superior edge over the YW since the reported RMSEs for the CML
approach are significantly lower. Furthermore, with the increase in the sample size, both
RMSEs under CML and YW decreases, which is as expected, and CML yields the most
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lower RMSEs. These simulation results demonstrate the capability of the proposed model
to capture the periodicity and dispersion while yielding reliable results. The next section
thereon considers an application of the above model.

Table 1. Simulation results for Model 1.

T.V 1 2 3 4 0.15 0.25 0.35 0.45 0.1 0.2 0.3 0.4

N EST α̂0,1 α̂0,2 α̂0,3 α̂0,4 α̂1,1 α̂1,2 α̂1,3 α̂1,4 β̂1 β̂2 β̂3 β̂4

500
YW 0.9386

(1.2392)
1.9950
(0.9161)

2.8670
(4.5134)

3.6495
(9.0003)

0.1492
(0.0492)

0.2515
(0.1287)

0.3638
(0.2464)

0.4511
(0.2064)

0.1078
(0.1579)

0.2022
(0.3129)

0.3787
(1.3028)

0.4629
(1.7544)

CML 0.9805
(0.7456)

1.8702
(0.8981)

2.7615
(1.1957)

3.8261
(1.7268)

0.1500
(0.0554)

0.2522
(0.0918)

0.3430
(0.1105)

0.4472
(0.1165)

0.1035
(0.0983)

0.2378
(0.2649)

0.3797
(0.3522)

0.4361
(0.3433)

700
YW 0.9579

(1.0524)
1.9606
(0.7801)

2.8153
(2.0798)

3.8214
(3.4814)

0.1505
(0.0396)

0.2460
(0.1062)

0.3510
(0.1486)

0.4533
(0.1570)

0.1045
(0.1299)

0.2182
(0.2700)

0.3539
(0.6145)

0.4374
(0.6807)

CML 0.9426
(0.7026)

1.9057
(0.6798)

2.7839
(1.0909)

3.8258
(1.5770)

0.1483
(0.0470)

0.2476
(0.0794)

0.3491
(0.0916)

0.4474
(0.1001)

0.1079
(0.0929)

0.2331
(0.2244)

0.3644
(0.3245)

0.4355
(0.3116)

1000
YW 1.0051

(0.7147)
1.9646
(0.6156)

2.8776
(1.7303)

3.8663
(2.3715)

0.1496
(0.0328)

0.2524
(0.0893)

0.3517
(0.1270)

0.4566
(0.1312)

0.0999
(0.0814)

0.2095
(0.2199)

0.3370
(0.4960)

0.4208
(0.4699)

CML 0.9934
(0.6302)

1.9529
(0.6350)

2.8595
(0.9824)

3.9241
(1.3433)

0.1482
(0.0378)

0.2448
(0.0667)

0.3518
(0.0779)

0.4456
(0.0820)

0.1025
(0.0792)

0.2198
(0.2067)

0.3408
(0.2881)

0.4174
(0.2690)

1500
YW 0.9722

(0.6019)
1.9837
(0.4943)

2.9172
(1.1180)

3.9079
(1.8497)

0.1510
(0.0269)

0.2485
(0.0708)

0.3534
(0.0921)

0.4565
(0.1039)

0.1022
(0.0746)

0.2069
(0.1730)

0.3226
(0.3428)

0.4104
(0.3708)

CML 0.9990
(0.5715)

1.9540
(0.5209)

2.9386
(0.8077)

3.9310
(1.1122)

0.1487
(0.0312)

0.2496
(0.0555)

0.3493
(0.0639)

0.4502
(0.0684)

0.1016
(0.0730)

0.2153
(0.1699)

0.3175
(0.2455)

0.4142
(0.2226)

2000
YW 0.9857

(0.5091)
2.0112
(0.4264)

2.9796
(0.9822)

3.8969
(1.6045)

0.1504
(0.0220)

0.2519
(0.0636)

0.3487
(0.0796)

0.4549
(0.0931)

0.1010
(0.0635)

0.1941
(0.1501)

0.3071
(0.2977)

0.4165
(0.3226)

CML 0.9869
(0.5238)

2.0044
(0.4492)

2.9828
(0.6768)

3.9127
(1.0164)

0.1493
(0.0263)

0.2466
(0.0475)

0.3471
(0.0568)

0.4506
(0.0610)

0.1016
(0.0666)

0.2013
(0.1488)

0.3076
(0.2037)

0.4166
(0.2046)

3000
YW 0.9790

(0.4409)
1.9745
(0.3425)

3.0055
(0.7515)

3.9237
(1.3427)

0.1494
(0.0183)

0.2507
(0.0503)

0.3483
(0.0652)

0.4523
(0.0684)

0.1494
(0.0183)

0.2507
(0.0503)

0.3483
(0.0652)

0.4523
(0.0684)

CML 0.9982
(0.3823)

2.0016
(0.29946)

2.9789
(0.5914)

4.0134
(0.8065)

0.1505
(0.0146)

0.2501
(0.0437)

0.3521
(0.0540)

0.4498
(0.0479)

0.1030
(0.0552)

0.1988
(0.1021)

0.3082
(0.1769)

0.3972
(0.2064)

7.2. Empirical Application

The first dataset is number of infections by Campylobacteriosis in Quebec-Canada,
from January 1990 to October 2000, consisting in 140 observations, collected every 28 days.
The visualization of the Campylobacteriosis time series is shown in Figure 1, while Table 3
summarizes basic descriptive statistics. Figure 2 displays both the empirical autocorrelation
function (ACF) and empirical partial autocorrelation (PACF) of the dataset.
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Figure 1. Campylobacteriosis time series

Table 3: Descriptive statistics for the Campylobacteriosis time series

Sample Size Minimum Maximum Median Mean Variance Skewness Kurtosis

140 1 55 10 10:6929 55:5237 2:4981 13:2290
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Figure 2. ACF and PACF of the Campylobacteriosis time series

Table 3 indicates clearly that the data is overdispersed, which indicates that, marginally,

a Generalized Poisson distribution is appropriate. The Campylobacteriosis time series, vi-

sualized in Figure 1, exhibits a periodical autocorrelation structure, of a period S = 13,

because the date are collected every 28 days, which is con�rmed by analyzing its empirical

correlogram given by Figure 2. The behaviors of these empirical functions suggest the use
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Table 2. Simulation results for Model 2.

T.V 3 0.1 0.35 2 4 0.15 0.4 3

N α̂0,1 α̂1,1 β̂1 κ̂1 α̂0,2 α̂1,2 β̂2 κ̂2

500 2.6617
(1.9797)

0.0957
(0.0493)

0.3914
(0.2164)

0.1811
(0.0595)

3.8397
(2.4274)

0.1554
(0.1013)

0.4175
(0.3471)

0.2858
(0.0520)

700 2.7718
(1.8795)

0.0993
(0.0422)

0.3744
(0.2006)

0.1878
(0.0477)

3.9208
(2.1885)

0.1509
(0.0893)

0.4105
(0.3125)

0.2924
(0.0414)

1000 2.7184
(1.6915)

0.1013
(0.0351)

0.3801
(0.1819)

0.1896
(0.0400)

4.0460
(1.8685)

0.1514
(0.0728)

0.3915
(0.2636)

0.2942
(0.0348)

1500 2.9046
(1.3452)

0.0995
(0.0285)

0.3593
(0.1424)

0.1941
(0.0312)

3.9332
(1.7243)

0.1506
(0.0598)

0.4076
(0.2434)

0.2963
(0.0283)

2000 2.8613
(1.2117)

0.1001
(0.0245)

0.3639
(0.1281)

0.1970
(0.0266)

4.0189
(1.5046)

0.1505
(0.0526)

0.3965
(0.2123)

0.2968
(0.0240)

3000 2.9384
(0.9882)

0.1007
(0.0206)

0.3560
(0.1031)

0.1972
(0.0227)

4.0844
(1.2677)

0.1507
(0.0422)

0.3881
(0.1733)

0.2987
(0.0195)

T.V 5 0.2 0.45 4 2 0.25 0.5 5

N α̂0,3 α̂1,3 β̂3 κ̂3 α̂0,4 α̂1,4 β̂4 κ̂4

500 4.4673
(3.4020)

0.2092
(0.1139)

0.5052
(0.4420)

0.3894
(0.0466)

2.7288
(2.9745)

0.2457
(0.0937)

0.4339
(0.3079)

0.4900
(0.0410)

700 4.3711
(3.3367)

0.2071
(0.0940)

0.5197
(0.4320)

0.3884
(0.0403)

2.6811
(2.7833)

0.2473
(0.0824)

0.4395
(0.2840)

0.4952
(0.0325)

1000 4.6191
(3.0316)

0.2053
(0.0773)

0.4917
(0.3875)

0.3943
(0.0314)

2.5714
(2.6295)

0.2453
(0.0683)

0.4483
(0.2639)

0.4949
(0.0282)

1500 4.6576
(2.7919)

0.2024
(0.0644)

0.4900
(0.3537)

0.3949
(0.0256)

2.3840
(2.3175)

0.2531
(0.0564)

0.4608
(0.2303)

0.4975
(0.0225)

2000 4.8544
(2.5130)

0.2060
(0.0559)

0.4629
(0.3188)

0.3987
(0.0213)

2.2584
(2.1164)

0.2491
(0.0483)

0.4763
(0.2121)

0.4982
(0.0186)

3000 4.9205
(2.1632)

0.2004
(0.0460)

0.4502
(0.2731)

0.3979
(0.0179)

2.1389
(1.8643)

0.2512
(0.0406)

0.4851
(0.1840)

0.4978
(0.0157)

Table 3. Descriptive statistics for the Campylobacteriosis time series.

Sample Size Minimum Maximum Median Mean Variance Skewness Kurtosis

140 1 55 10 10.6929 55.5237 2.4981 13.2290
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Figure 1. Campylobacteriosis time series

Table 3: Descriptive statistics for the Campylobacteriosis time series

Sample Size Minimum Maximum Median Mean Variance Skewness Kurtosis
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Figure 2. ACF and PACF of the Campylobacteriosis time series

Table 3 indicates clearly that the data is overdispersed, which indicates that, marginally,

a Generalized Poisson distribution is appropriate. The Campylobacteriosis time series, vi-

sualized in Figure 1, exhibits a periodical autocorrelation structure, of a period S = 13,

because the date are collected every 28 days, which is con�rmed by analyzing its empirical

correlogram given by Figure 2. The behaviors of these empirical functions suggest the use
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Figure 2. ACF and PACF of the Campylobacteriosis time series.
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Table 3 indicates clearly that the data is overdispersed, which indicates that, marginally,
a Generalized Poisson distribution is appropriate. The Campylobacteriosis time series,
visualized in Figure 1, exhibits a periodical autocorrelation structure, of a period S = 13,
because the date are collected every 28 days, which is confirmed by analyzing its empirical
correlogram given by Figure 2. The behaviors of these empirical functions suggest the use
of an periodic GPINGARCH(1, 1) model, with period S = 13. The CML estimates of the
periodic parameters, are given in Table 4.

Table 4. The estimated parameters from PGPINGARCH13(1,1) model.

s 1 2 3 4 5 6 7 8 9 10 11 12 13

α̂0,s 0.1817 0.0570 0.0331 0.0477 0.7740 5.0720 0.1220 0.1595 0.3595 4.0128 4.9584 1.7467 0.0521

α̂1,s 0.0607 0.7836 0.0073 0.3408 0.0351 0.6589 0.3673 0.1614 0.4792 0.6301 0.0278 0.2077 0.0039

β̂s 0.9833 0.1472 0.8422 0.9337 0.8560 0.0200 0.6550 1.0414 0.8273 0.0066 0.5870 0.4381 0.8143

κ̂s 0.0029 0.1670 0.0118 0.1477 0.0061 0.0652 0.2080 0.0748 0.5339 0.0885 0.0117 0.0158 0.0032

In order to assess the adequacy of the fitted model, the standardized Pearson resid-
uals (Weiß et al. 2019 [21]) are used. Therefore, the standardized Pearson residuals of
the PGPINGARCH13(1, 1) model have 0.0154 mean, and 0.8918 as variance, which are
sufficiently close to 0 and 1, respectively. Additionally, the analysis of the Pearson residuals
correlogram, given in Figure 3, do not indicate any significant autocorrelation values. The
obtained Ljung-Box statistic value is, 0.6999, which confirm that there in no evidence of any
correlation within the Pearson residuals (because χ2

0.05,20 = 31.4140). Thus, the adequacy of
the proposed model is not statistically rejected.
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Figure 3: ACF and PACF of Pearson residuals based on the �tted PGPINGARCH13(1; 1) model
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compared to the number of parameter to estimate which is 52, therefore the selected model
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Figure 3. ACF and PACF of Pearson residuals based on the fitted PGPINGARCH13(1, 1) model.

An estimated trajectory of the process, in red color, opposed to the real data, in blue
color, is visualized in the Figure 4. It should be noted that the size of our time series is small
compared to the number of parameter to estimate which is 52, therefore the selected model
can be improved for a larger size.

The fitted PGPINGARCH13(1, 1) model shows an amelioration comparing to the
INGARCH(1, 13) model (Ferland et al. (2006) [1]) and also to the PINGARCH13(1, 1)
model (Bentarzi and Bentarzi (2017) [15]), in terms of the Sum of Squared Errors SSE
and R2 results, computed for each model, listed in Table 5. On the other hand, the fit-
ted PGPINGARCH13(1, 1) does not show an improvement compared to the Mixture
PINARCH13(2; 1, 1) model (Ouzzani and Bentarzi (2019) [22]), and this is due to the fact
that the series seems to be exhibiting a bimodality.
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Figure 4: An adjusted trajectory of the �tted PGPINGARCH13(1; 1) model

The �tted PGPINGARCH13(1; 1)model shows an amelioration comparing to the INGARCH (1; 13)

model (Ferland et al. (2006)) and also to the PINGARCH13 (1; 1) model (Bentarzi and

Bentarzi (2017)), in terms of the Sum of Squared Errors SSE and R2 results, computed for

each model, listed in Table 5. On the other hand, the �tted PGPINGARCH13(1; 1) does

not show an improvement compared to the Mixture PINARCH13 (2; 1; 1) model (Ouzzani

and Bentarzi (2019)), and this is due to the fact that the series seems to be exhibiting a

bimodality.

Table 5. Computed SSE and R2 for each model

INGARCH (1; 13) PINGARCH13 (1; 1) MPINARCH13 (2; 1; 1) PGPINGARCH13 (1; 1)

SSE 4373 2882 961 2222

R2 83:7187 89:2699 96:4221 91:7271

7. Conclusion

In this paper we proposed to enlarge the class of INGARCH models so as to include period-

icity in their autocovariance structure. The proposed model account for both overdispersion

and underdispersion. Periodic mean and variance of the proposed model have been estab-

lished under some periodically stationary condition. Conditions for the existence higher order
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Figure 4. An adjusted trajectory of the fitted PGPINGARCH13(1, 1) model.

Table 5. Computed SSE and R2 for each model.

INGARCH(1, 13) PINGARCH13(1, 1) MPIN ARCH13(2; 1, 1) PGPINGARCH13(1, 1)

SSE 4373 2882 961 2222
R2 83.7187 89.2699 96.4221 91.7271

8. Conclusions

In this paper we proposed to enlarge the class of INGARCH models so as to in-
clude periodicity in their autocovariance structure. The proposed model account for
both overdispersion and underdispersion. Periodic mean and variance of the proposed
model have been established under some periodically stationary condition. Conditions
for the existence higher order moment and their closed forms are given. The periodic
autocovariance structure is considered, while providing the closed-form of the periodic
autocorrelation function. The Yule Walker and the Conditional Maximum Likelihood esti-
mators for the periodic parameters are considered. As an illustration, a simulation study
was presented, showing the superiority of the CML method. Finally, a real data example,
using the PGPINGARCHS(1, 1) model to fit the Campylobacteriosis time series shown an
improvement comparing with the exiting models using the same dataset.
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