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Abstract: The aim of this research is to generalize the famous Lyapunov theorem of the classical
explicit differential systems (Continuous or Discrete) given by the two abstract forms: x′(t) = Px(t),
xn+1 = Pxn, where P is a linear operator or a matrix if the space has finite dimension, in order to
study the spectrum of a degenerate differential systems as Ax′(t) = Bx(t), t ≥ 0, where A and B
are two linear bounded operators in Hilbert spaces and A is not an invertible operator. Using some
properties of the spectral theory for the pencil λA− B which is obtained by substituting x(t) = eλtv
in the homogenous differential equation of the previuos degenerate system, and an appropriate
conformal mapping. The achieved results can be applied to study the stability and controllability of
certain implicit differential systems.
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1. Introduction

The fondamental challenges of mathematical problems about differential systems
appears precisely in cotrol theory, many researchers use linear systems of two types:
continuous or discrete. Since 1970, many mathematiciens become intersted in another wide
classes of differential systems which have a real pratical and physical applications can be
found in [1–4].

In the present paper, we propose the problem differential of implicit stationary equa-
tion discribed as follows:

Ax′(t) = Bx(t) + ϕ(t, x(t)), t ≥ 0; (1)

with initial condition
x(t0) = x0.

Here, we assume that A and B are two bounded linear operators acting in the same
complex Hilbert spaceH and ϕ is a continuous function from [0, ∞[×H intoH, the operator
A is not invertible.

We need those notations: ‖.‖, < ., . > are the norm and the inner product inH. Now,
we consider the system (1) in the homogenous case and suppose that it has a solution then:

• The system (1) is said to be exponential, if for any solution x(t) with t ≥ 0, we have

‖x(t)‖ ≤ Meαt‖x0‖, t ≥ 0; (2)

where the constants α and M are not depanded on the solution x(t).
• For α < 0, the system (1) is exponentially stable. In particular, for α = 0 it is uniformly

bounded.
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• The system (1) is well-posed, if it satisfies the following conditions:

1. If for any solution x(.) such that x(0) = x0, then x(t) = 0 for all t ≥ 0;
2. it generates an evolution semigroup of bounded operators S(t) : x0 7−→ x(t) for

all t ≥ 0.

The operators S(t) are defined on the set D0 = {x0} of the admissible initial vectors x0.

2. Lyapunov’s Theorem and Its Generalization

In this section, we investigate the homogeneous problem of Equation (1) with ϕ ≡ 0
in the next form:

Ax′(t) = Bx(t), t ≥ 0, x(t0) = x0; (3)

our main obective is to extand the general Lyapunov theorem [1] of the linear differential
systems to the operator pencil λA− B then, we apply the achieved results to affirme the
stability and controllability of some degenerate systems as Equation (3).

Definition 1 ([3]). The complex parameter λ is said to be regular point of the pencil λA− B, if
the operator (λA− B)−1 exists and it is bounded inH.

We denote by ρ(A, B) the set of all regular points and its complement by σ(A, B) =
C\σp(A, B), which is also called the spectrum of the operator pencil λA − B. The set of all
eigen-values of the pencil λA− B is denoted by σp, such that

σp(A, B) = {λ ∈ C|∃v 6= 0, (λA− B)v = 0}.

Theorem 1. Consider the problem (3). If the spectrum σ(A, B) of the linear bounded operators A
and B lies in the left half plane (Rel(λ) < 0), then for any uniform positive operator G � 0, there
exists a uniform positive operator W � 0 such that

B∗WA + A∗WB = G. (4)

Proof. We suppose that σ(A, B) ⊂ {λ : Re(λ) < 0}, then i is a regular point and the
operator T = i(iA + B)(iA − B)−1 is bounded. Now, we use the conformal mapping

µ = φ(λ) =
−iλ + 1

λ− i
, we obtain

T − µI =
−2

z− i
(λA− B)(iA− B)−1

So, the operator T − µI is invertible if and only if the pencil λA− B is also invertible.
Hence,

σ(T) = σ(I, T) = φ(σ(A, B)).

Using the classical Lyapunov’s theorem [3], we have:
For any operator H � 0, there exists an operator W � 0 such that

Re(WT) =
WT + T∗W

2

=
1
2
(iW(iA + B)(iA− B)−1 − i(−iA∗ − B∗)−1(−iA∗ + B∗)W)

= (−iA∗ − B∗)−1(A∗WB + B∗WA)(iA− B)−1

= −H.

We put G = B∗WA + A∗WB, with G = −(iA∗ + B∗)H(iA− B)� 0.
In fact, G = G∗ and < Gx, x >≥ c‖x‖2, c > 0. Thus, our theorem is proved.

Theorem 2. If Equation (4) is satisfying for the pair(W, G) of bounded positive unifor operators,
then i is not an eigen-value for the operator pencil λA− B.
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Proof. Suppose that i ∈ σp(A, B), and v is its eigen-vector then, (iA − B)v = 0 also
Bv = iAv. After the computing of the scalar product, we obtain

< Gv, v >=< (B∗WA + A∗WB)v, v >= 0, ∀v ∈ H. (5)

Since G � 0, then < Gv, v >≥ c‖v‖2 > 0 which shows a contraduction with the main
hypothesis above.

We recall some notes conserning uncontrollable system as (3) before summarizing
our results. Let D0 = {x0} be the initial subspace of H, we denote by A0 = A\D0 the
invertible restriction of the operator A in D0 (The operator A0 is invertible, if the system (3)
is well-posed).

Lemma 1. Let A0 be an invertible operator. If ϕ(τ, x(τ)) ∈ AD0 for any τ ≥ τ0 and the function
S(t− τ)A−1

0 ϕ(τ, x(τ)) is integrable (with respect to τ) where {S(t)}t≥0 is the semigroup of the
operators of Equation (3), then the system (3) is equivalent to the following equation:

x(t) = S(t)x0 +
∫ t

0
S(t− τ)A−1

0 ϕ(τ, x(τ))dτ. (6)

Lemma 2 (See ([3])). If g(t) ≤ c +
∫ t

0 g(τ)h(τ) for all t ≥ 0, where h is a continuous positive
real function and c > 0 is an arbitrary constant, then

g(t) 6 c.exp(
∫ t

0
h(τ)dτ).

Theorem 3. Suppose that:

1. the system (3) is well-posed;
2. the linear operator ϕ(t, x(t)) tronsforms D0 into AD0 such that∫ ∞

0
‖A−1

0 ϕ(t, x(t))‖dt < ∞, ∀t ≥ 0;

then the system (3) is exponentiall stable.

Proof. Assuming that the first condition of this theorem is verified, then we have

‖S(t)x0‖ ≤ Meαt‖x0‖,

and
‖S(t− τ)A−1

0 ϕ(τ, x(τ))‖ ≤ Met−τ‖A−1
0 ϕ(τ, x(τ))‖,

with A−1
0 ϕ(τ, x(τ)) ∈ D0. Using Equation (6), then we obtain

‖x(t)‖ ≤ Meαt‖x0‖+ M
∫ t

0
eα(t−τ)‖A−1

0 ϕ(τ, x(τ))‖‖x(τ)‖dτ,

which is equivalent to

e−αt‖x(t)‖ ≤ M‖x0‖+ M
∫ t

0
e−ατ‖A−1

0 ϕ(τ, x(τ))‖‖x(τ)‖dτ.

Applying Lemma 2 where g(t) = e−αt‖x(t)‖, and h(τ) = M‖A−1
0 ϕ(τ, x(τ)),

c = M‖x0‖, then

e−αt‖x(t)‖ ≤ M‖x0‖exp[M
∫ t

0
‖A−1

0 ϕ(τ, x(τ))‖dτ] ≤ M‖x0‖exp[M
∫ ∞

0
‖A−1

0 ϕ(τ, x(τ))‖dτ].
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Therefore, ‖x(t)‖ ≤ M1eαtx0.

Particulary, in finite dimentional spaces we can use the theory of elementary divisors
of the matrix pencil λA− B for example see [5], we establish the next important result.

Theorem 4. The following statement are equivalent:

1. The system (3) is exponentially stable;
2. σ(A, B) = σ(A, B) ⊂ {λ : Re(λ) < 0};
3. There exists a positive definite matrix W � 0 such that B∗WA + A∗WB� 0.

Remark 1. In finite dimentional spaces, exponential stability is characterized by the fact that the
spectrum of matrices A and B lies in the left half plane, but the situation in infinite dimentional
spaces is much more complicated.

3. Relation between Stabilizability and Controllability

We provide here some definition and basic reluts about the exact controllability and
complete stabilizability of an implicit differential control system governed by the gen-
eral form:

Ax′(t) = Bx(t) + Cu(t), x(0) = x0. (7)

where C is also a linear bounded operator and u(t) is a function takes values in the Hilbert
space U ⊂ H supposed to be Bockner integrable. x(t) is the mild solution for restriction on
a class of controls u given by

x(t) = x(t, u(.), x0) = S(t)x0 +
∫ t

0
S(t− τ)A−1

0 Cu(τ)dτ. (8)

The famous relation between exact controllability and complete stabilizability was
first established by Slemrod who proved that the controllability from any state to any state
implies the exponential stabilizability. In [6] Zabczyk showed that the implication in the
opposite way is possible, some authors pricised that in the case of Hilbert spaces with
bounded operators the previous idea is not avaible.

The system (7) is exactly cotrollable if for all x0, x1∈ H, there exists a time T and a
control u ∈ Lp(0, T; U), p ≥ 1, such that x(T, u(.), x0) = x1. For x1 = 0 so, we talk about
exact null controllability.

System (7) is said exponentially stabilizable, if there exists a linear feedback control
u(t) = Dx(t), where D another linear bounded operator such that

‖eA−1
0 (B+CD)t‖ ≤ Mωe−ωt, Mω ≥ 1, ω > 0. (9)

The system (7) is said to be completely stabilizable if it is exponentially stabilizable for
all ω > 0.

LetRT be the reachability operator defined as

RTu(.) =
∫ T

0
S(t− τ)A−1

0 Cu(τ)dτ, (10)

which is a linear bounded operator acting from Lp toH. The system (7) is exactly control-
lable if Im(RT) = H also, it is exactly null controllable if and only if

Im(RT) ⊂ Im(eA−1
0 (B+CD)T), ∀T > 0.

We denote byR∗T the adjoint operator ofRT satisfies the property:

∃δ > 0, ∀x∗ ∈ H, ‖R∗Tx∗‖ ≥ δ‖x∗‖. (11)
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We can have many implicit conditions on exact controllability summarized by the
bellow formulation:

‖R∗Tx∗‖ = (
∫ T

0
‖C∗(A∗0)

−1S∗(t)x∗‖qdt)
1
q , u ∈ Lp, p > 1,

(12)

‖R∗Tx∗‖ = ess sup{‖C∗(A∗0)
−1S∗(t)x∗‖}, 0 ≤ t ≤ T, u ∈ L1;

where ess sup is the essential supremum of a set.

Remark 2. The condition of exact controllability in the class of controls Lp, p > 1 are equivalent
but the situation become more complicated to show it in the class L1.

Theorem 5 ([7,8]). The system (7) is exactly controllable in the class Lp if and only if

• For p = 1, if lim
n→∞

(C∗(A∗0)
−1S∗(t)x∗n) = 0, uniformly for all t ∈ [0, T] then lim

n→∞
x∗n = 0.

• p > 1, if lim
n→∞

(C∗(A∗0)
−1S∗(t)x∗n) = 0, for all t ∈ [0, T] then lim

n→∞
x∗n = 0.

4. Conclusions

The notion of stability and controllability of newclass of controlled systems defined
by implicit stationary differential equation was the purpose of this paper. In course of
this work we used the spectral theory of the operator pencil λA− B to provide conditions
for the stability in sens of Lyapunov also we studied the controllability of those systems.
Furthermore, most of researchs will be directed to open problems for some particular types
of systems on special spaces with infinite dimension.
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