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Abstract: In this paper, we present a two-component Weibull mixture model. An important property
is that this new model accommodates bimodality, which can appear in data representing phenomena
in some heterogeneous populations. We provide statistical properties, such as the quantile function
and moments. Also, the Expectation-Maximization (EM) algorithm is used to find maximum-
likelihood estimates of the model parameters. Further, a Monte Carlo study is carried out to evaluate
the performance of the estimators on finite samples. The new model’s relevance is shown with an
application referring to vote proportion for the Brazilian presidential elections runoff in 2018. The
proportion of votes is an important measure in analyzing electoral data. Since it is a variable limited
to the unitary interval, unit distributions should be considered to analyze its probabilistic behavior.
Thus, the introduced model is suitable for describing the characteristics detected in these data, such
as the asymmetric behavior, bimodality, and the unit interval as support. In the application, the
superiority of the proposed model is verified when comparing the fit with the two-component beta
mixture models.
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1. Introduction

Finite mixture models appeared in a study on the asymmetry of grouped materials
not being homogeneous [1], being useful in the presence of multimodality, heavy tails, and
asymmetry [2]. Many works have appeared in the literature in the context of finite mixtures.
For example, [3] proposed a model for exponential mixtures. Considering Weibull mixture
models, we can cite [4] for characterizations of the failure rate function and [5] for reliability
approximations. Recently, [6] analyzed individual periods in combined sea waves using
parametric mixture models.

In data with limited support, beta mixture models have been studied by several
authors. [7] proposed a study on the beta mixture to solve problems related to correlations
of gene expression levels, [8] presented a study on Bayesian analysis, and [9] studied
beta mixture in regression models. The Kumaraswamy mixture model is an alternative
to the beta mixture models. [10] carried out a Bayesian study on the three-component
Kumaraswamy mixture.

In this paper, a new two-component mixture model is proposed as an alternative
to model population heterogeneities in the unit support. We consider that each mixture
component follows a unit Weibull (UW) distribution [11]. Some of the contributions of this
new distribution, the so-called Weibull mixture model of the two-component unit (UWUW),
are: i) all estimation routines, including simulations and applications, are performed
using the expectation-maximization (EM) algorithm, and ii) applicability for electoral data
modeling. The EM algorithm is a computational method used to calculate the maximum
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likelihood estimator (MLE) iteratively [12]. It is widely used to estimate the maximum
probability for finite mixture models [13]. Finally, the adjustment to electoral data, defined
as the district’s share of votes by the total number of valid votes cast in the district, the
proportions of votes are useful, since the electoral districts can vary considerably in the size
of the population [14]. Also, this measure can analyze other characteristics of the electoral
process, such as electoral volatility [15] and nationalization of electoral change [14]. The
data set used refers to the proportions of votes in the Brazilian presidential elections runoff
in 2018.

The rest of the work is organized as follows. In Section 2, the new mixture model
is presented. Section 3 introduces the EM algorithm to perform maximum likelihood
estimation for the UWUW model. In Section 4, an application is made with electoral data.
The final considerations of this work are addressed in Section 5.

2. The proposed model

In this section, the two-component unit Weibull mixture distribution, so-denoted
UWUW, is introduced. Let X be a random variable with UWUW distribution. Then, its
cdf is obtained as

FUWUW(x; Θ) = p FUW(x; θ1) + (1− p)FUW(x; θ2)

= p τ[− log x/ log µ1]
β1 + (1− p) τ[− log x/ log µ2]

β2 ,

where θ1= (µ1,β1)
>, θ2=(µ2,β2)

>, µ1 and µ2 ∈ (0, 1) are location parameters associated
with the τth quantiles of each component of the mixture, β1 and β2 > 0 are shape parame-
ters, and τ ∈ (0, 1) is assumed to be known. One can note we use a parameterization based
on quantiles to formulate each component of the mixture. The advantage of working with
reparametrization in terms of quantiles is its flexibility to model data with heterogeneous
conditional distributions [16,17]. The UWUW probability density function (pdf) is given
by

fUWUW(x; Θ) = p fUW(x; θ1) + (1− p) fUW(x; θ2)

= p
β1 log τ

x log µ1

(
log x
log µ1

)β1−1
τ(log x/ log µ1)

β1 (1)

+ (1− p)
β2 log τ

x log µ2

(
log x
log µ2

)β2−1
τ(log x/ log µ2)

β2 .

Figure 1 shows some plots of the UWUW pdf for some combinations of parameters and
τ = 0.5, which reveals the high flexibility of the new distribution. It accommodates
bimodal, unimodal, descending, and bath forms under different asymmetric characteristics.
Also, it is possible to identify a bimodal form for different values of p. Hereafter, we denote
X as a random variable following a UWUW distribution, this is, X ∼ UWUW(Θ).

3. Parameter estimation

An approach to the iterative computation of MLEs when the observations can be
treated as incomplete data is the well-known expectation-maximization (EM) algorithm.
Considering the context of two-component mixture models, let x = {x1, . . . , xn} be a
random sample of size n from a random variable X having pdf (4) with unknown parameter
vector Θ = (θ>1 , θ>2 , p)>, where θ1=(µ1,β1)

> and θ2=(µ2,β2)
>. It is customary to call x

of “incomplete data" since it is associated with a second component z = {z1, . . . , zn} of
unobserved values of a latent random variable Z. Each value zi of Z indicates which
component of the mixture belongs to the ith observation xi such that

zi =

{
1 if xi has pdf fUW(x|θ1),
0 if xi has pdf fUW(x|θ2),
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Figure 1. Plots of the UWUW density for some parameter values.

where P(Z = 1) = p and P(Z = 0) = 1− p. The complete-data specification is determined
by the joint density of (X, Z)

fX,Z(xi, zi; Θ) =

[
p

β1 log τ

xi log µ1

(
log xi
log µ1

)β1−1
τ(log xi/ log µ1)

β1

]zi

×
[
(1− p)

β2 log τ

x log µ2

(
log x
log µ2

)β2−1
τ(log x/ log µ2)

β2

]1−zi

,

and based on it, the complete log-likelihood function, for the sample of size n, is given by

lc(Θ) =
n

∑
i=1

log fX,Z(xi, zi; Θ)

=
n

∑
i=1

zi log

[
p

β1 log τ

xi log µ1

(
log xi
log µ1

)β1−1
τ(log xi/ log µ1)

β1

]

+
n

∑
i=1

(1− zi) log

[
(1− p)

β2 log τ

x log µ2

(
log x
log µ2

)β2−1
τ(log x/ log µ2)

β2

]
. (2)

The EM algorithm iterates, between two steps, to compute the MLEs of Θ. In the
E-step or expectation step, due to (2) is unobservable, it is replaced by its conditional
expectation with respect to the conditional distribution of Z, given x and the current
parameter estimates. More specifically, in the (k + 1)th iteration, the E-step computes

Q(Θ, Θ(k)) =E
Θ(k) [lc(Θ)|x]

=
n

∑
i=1

log fX,Z(xi, zi; Θ)

=
n

∑
i=1

z̄i1 log

[
p

β1 log τ

xi log µ1

(
log xi
log µ1

)β1−1
τ(log xi/ log µ1)

β1

]

+
n

∑
i=1

z̄i2 log

[
(1− p)

β2 log τ

x log µ2

(
log x
log µ2

)β2−1
τ(log x/ log µ2)

β2

]
, (3)



Journal Not Specified 2023, 1, 0 4 of 6

where

z̄i1 =
p(k) fUW(x; θ

(k)
1 )

p(k) fUW(x; θ
(k)
1 ) + (1− p(k)) fUW(x; θ

(k)
2 )

,

z̄i2 =
(1− p(k)) fUW(x; θ

(k)
2 )

p(k) fUW(x; θ
(k)
1 ) + (1− p(k)) fUW(x; θ

(k)
2 )

,

and Θ(k) = (θ
(k)
1 , θ

(k)
2 , p(k))> are obtained from the kth iteration.

The M-step or maximization step, requires the maximization of (3) with respect to Θ.
This is

Θ(k+1) = arg max
Θ

Q(Θ, Θ(k)). (4)

The vector Θ(k+1) is used to initialize the next iteration. Thus, the EM algorithm
is initialized by the starting values Θ(0) = (θ

(0)
1 , θ

(0)
2 , p(0))> and the MLEs Θ̂ of Θ are

obtained by Θ̂ = Θ(k+1) when a convergence criterion |Θ(k+1) −Θ(k)| < ε is reached [12].
We set ε = 10, 000. It should be noted that it is not possible to obtain analytical results from
these expressions. It is necessary to perform this maximization by applying some iterative
techniques, for example, Newton Raphson’s method [18].

4. Application

In what follows, we present a case study that illustrates the suitability of the UWUW
distribution for modeling real unit data sets. The database considered is the municipality’s
vote proportion of the winning candidate in the Brazilian presidential elections runoff in
2018. Since it presents a bimodal shape, see Figure 2a, a unimodal distribution would
not be appropriate to fit this data set. Therefore, the UWUW distribution is a suitable
alternative to model these data. Its performance is compared with other double-bounded
component mixtures that have already been studied in the literature: two-component beta
mixture (BB) model. In this paper, the parameterization proposed by [19] is considered to
define the BB model, which has pdf given by

f (x; Θ) = p
Γ(µ1 + β1)

Γ(µ1)Γ(β1)
xµ1−1(1− x)β1−1 + (1− p)

Γ(µ2 + β2)

Γ(µ2)Γ(β2)
xµ2−1(1− x)β2−1, 0 < x < 1,

where Θ = (µ1, µ2, β1, β2, p)>, µ1 and µ2 ∈ (0, 1) are location parameters associated with
the mean of each mixture component, β1 and β2 > 0 are precision parameters, and p ∈ (0, 1)
is the parameter that measures the weights of the mixture.

For all competitive mixture models, the parameter estimation is carried out using the
EM algorithm following the steps described in Section 3. The Corrected Anderson-Darling
(A∗) [20], Cramér-von Misses (W∗) [21], and the Kolmogorov Smirnov (KS) [22] statistics
are calculated to assess the quality-of-fit for the three fitted models. The lower their values
are, the better is the model fit. All the analysis is performed using the R programming
language, and the goodness-of-fit measures are computed using the AdequacyModel [23]
subroutine.

Table 1 displays the parameter estimates, standard errors, and the model comparison
criteria of the three considered models. The results indicate that the UWUW distribution
provides the lowest values for all goodness-of-fit statistics. The KWKW presents the worse
performance, not being an adequate alternative to fit these data.
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Figure 2. Estimated densities (a) and empirical cdf (b) of the BB, KWKW and UWUW models.

Table 1: Parameter estimates and standard errors (given in parentheses) for the models
fitted to Bolsonaro’s vote proportion in Brazilian presidential elections in 2018.

µ̂1 µ̂2 β̂1 β̂1 p̂ W∗ A∗ KS
BB 0.5816 0.1985 9.7510 29.3260 0.7268 1.2937 7.4584 0.0477

(0.0035) (0.0026) (0.3201) (1.3521) -
UWUW 0.2677 0.6491 2.7011 2.9611 0.5368 0.4119 3.6768 0.0153

(0.0039) (0.0027) (0.0545) (0.0567) -

Figure 2a presents the histogram of the vote proportion data overlaid with the es-
timated densities of the fitted models. The bimodality of the data is confirmed, and the
UWUW model provides the closest fit to the histogram. Clearly, the KWKW model is not
adequate to fit these data. Further, Figure 2b gives plots of the empirical and estimated
cdfs. This visual inspection favors the results in Figure 2a and Table 1, indicating that the
proposed model is appropriate to fit these data. Thus, it can be an effective alternative
to analyze vote proportions, being quite competitive with the BB model and providing
consistently better fits than the KWKW model. Therefore, the UWUW provides a useful
tool for modeling bimodal data restricted to the unit interval. Also, with the estimates of
the mixture parameters, it is possible to identify that more than 50 % of the observations
belong to the first mixture component. The estimated median of the first component is
µ̂1 = 0.2677 and the estimated median of the second component is µ̂2 = 0.6649.

5. Conclusion

A two-component mixture model was defined to describe the heterogeneities of the
population with the limited domain. The two-component unit Weibull mixture (UWUW)
model is formulated considering that each mixture component follows the unit Weibull
distribution. Some of the main properties of UWUW have been presented, such as ordinary
moments. The EM algorithm was used to obtain maximum likelihood estimates for
the model parameters. To evaluate the performance of the EM algorithm, Monte Carlo
simulations were performed. An application to electoral data illustrates the importance
and potential of the new model. The motivating data set is about the vote proportions
obtained by the winning candidate in the Brazilian presidential runoff elections in 2018.
The results indicate that our proposal is adequate to fit this data set since it is suitable to
analyze the asymmetric and bimodal behaviors. From the mixing parameter estimate, we
can conclude that 53.68% of the observations are from the first component of the mixture
with estimated median at µ̂1 = 0.2677. The estimated median for the municipalites from
the second mixture compontent was µ̂2 = 0.6491. This application proved empirically that
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the UWUW performance may overcome other two-component mixture models based on
other widely known unit distributions such as the beta and Kumaraswamy.
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