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Abstract: Applying the surface-enhanced Raman scattering (SERS) method to detect bioactive mol-

ecules such as DNA, proteins, and drugs has significant potential for structure-sensitive nondestruc-

tive chemical analysis. The SERS discrimination of single molecule oligomers in DNA, microRNA, 

and proteins has attracted wide attention due to the possibility of developing new sensing technol-

ogy. The collected signal’s sensitivity has the level of detection of single oligomers, which can be 

compared with the simulation results corresponding to the sensor structure. We investigate the av-

eraging method of the individual bond spectra for DNA nucleotides in the ring part of the pyrimi-

dine (6-ring) and purine (6–5-ring) bases to form vibrational spectra obtained by molecular dynam-

ics (MD) simulation. The system consists of the Au nanoparticles (from 1 to 4 NP assay) attached to 

a graphene sheet at the edge of the nanopore that localizes in the nanopore nucleotide interaction & 

spectral enhancement. The nucleotide translocation velocity set at 0.025 m/s compares with the ex-

perimental range. The vibrational spectra ring average has been tested for adenine and guanine with 

close correspondence (in the 500–1700 cm−1 range) to the experimental Raman & SERS spectra and 

extended to cytosine and thymine nucleotides. We also modified the number of the Au nanoparti-

cles from 1 NP to 4 identical NPs to evaluate the influence of the interaction on the MD transient 

spectra. The variations of mode frequencies and amplitudes due to the number of Au NPs in bond 

spectra, as well as ring averages, mark the corresponding Au–nucleotide interactions and are con-

sidered to be used as training sets for machine learning methods. 
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1. Introduction 

Nanophotonic sensing methods based on the SERS detection of DNA, RNA, and pro-

tein sequences on solid-state and biological platforms [1,2] have reached single nucleotide 

or amino acid sensitivity [1–13]; however, a number of challenges still remain ahead of 

technological implementation. High sensitivity and selectivity in small volumes have 

been achieved by manipulation of plasmonic enhancers used to create hot spots for the 

measured molecules by using different shapes, assays, and surfaces of gold or silver 

nanostructures [12,13]. Some methods based on trapping a gold nanoparticle in a local-

ized space of nanohole [14] have been demonstrated. The use of solid-state plasmonic 

platforms has the advantage of fine-tuning such sensing systems’ physical and chemical 

properties. However, the time and space resolution of the solid-state platforms still re-

mains the major challenge to oligomer sequencing together with translocation mechanism 

control. The single-molecule spatial and temporal localization of a nanosized optical hot 

spot is able to achieve a resolution high enough for single oligomer detection. The princi-

ple of the plasmonic nanopore can be applied to enhanced optical spectroscopy for mul-

tiplexed DNA and protein sequencing [15]. Each oligomer has its own Raman fingerprint, 

and discrimination among them has been proven by the use of SERS [16,17]. In addition 
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to distinguishing oligomer molecules in sequencing [18,19], the SERS spectrum could pro-

vide additional information on molecular states, including oxidation and methylation 

[20,21]. 

For high spatial resolution, nano-objects inside a nanopore for single-molecule SERS 

measurements must be precisely localized. The duration of the interaction between the 

oligomer and enhancer should be large enough to ensure a high signal-to-noise ratio in 

single DNA/protein analysis to acquire a sufficient number of spectra for averages. Typi-

cal translocation of a DNA base or an amino acid residual through solid-state nanopores 

takes nano- to microseconds, while typical acquisition time takes a millisecond per frame 

in SERS spectra [22]. The duration of the acquisition process ensures the spectral average 

of the rotation and conformation motion. The orientation dependence of spectra was con-

firmed [23] and showed that the orientation of single Rhodamine 6G and oxygenated/de-

oxygenated states of single hemoglobin could be observed by SERS. 

Protein detection using SERS [24,25] demonstrated the typical behavior of a linked 

single molecule SERS including spectral fluctuations and blinking. From the above prob-

lems, the translocation of measured molecules in a designed nanopore can lead to a better 

signal in the nanopore for the high-speed acquisition of SERS spectra. The different orien-

tations of single oligomers inside the nanopore provide information on the state and in-

teraction of the biomolecule. Various orientations of molecules usually cause the fluctua-

tion of SERS spectra, causing peak shifts, appearances, disappearances, or intensity 

changes [25]. Therefore, obtained SERS signals will benefit from decoding contributing 

states and interactions by machine learning algorithms. 

Improvement in spatial resolution can be achieved when the sensor can be confined 

down to the atomic thickness of the 2D material. The atomic thickness also leads to control 

of nanopore translocation time and possible changes in molecule orientation to identify 

oligomers. SERS plasmonic nanoparticles were integrated with a nanopore in a 2D mate-

rial’s membrane, especially graphene [26–32] and hexagonal BN [33–36]. The detection of 

DNA/RNA oligomers, mononucleotides [37–39], and nucleobases [40] with SERS tech-

niques has been demonstrated. 

Simulation of the SERS sensors with a configuration close to the experimental one is 

required to attribute orientation and conformation-dependent spectra of DNA/protein ol-

igomers at the time of relative motion inside the sensing system. The ab initio MD method 

reproduces high-fidelity orientation-dependent infrared and Raman spectra but remains 

computationally extensive [41]. The molecular dynamics (MD) method can simulate vi-

brational spectra over a correlation time span as already time-averaged; however, each 

bond spectra is estimated individually that ensure orientation and conformation resolved 

sensing. In our system, the 2D graphene nanopore is combined with a pyramidal Au na-

noparticle (NP) (single vs. four identical pyramids) attached at the edge of the nanopore 

to form the SERS sensor. Such design allows guiding the single oligomer through the cre-

ated “hot” spot [42–44]. Individual bond spectra should be averaged to include contribu-

tions of multiple bonds into oligomer spectrum. We study the vibrational spectra of the 

four DNA nucleotides together with the methylated forms of cytosine and adenine in the 

dynamic interaction with the Au NP attached to the graphene nanopore. For bonds in 

each nucleobase, averages for two types of nucleotides, purine and pyrimidine, were con-

sidered over bonds in the two-carbon nitrogen ring (adenine and guanine) and one-carbon 

nitrogen ring (thymine and cytosine) in the clockwise direction to include each ring bond. 

The frequencies and modes that can serve as markers of the corresponding nucleotides 

and their methylated forms are estimated and compared with existing experimental Ra-

man and SERS spectra. The way to input obtained by MD nucleotide’s vibrational spectra 

into machine learning (ML) random forest algorithm as training sets for spectral recogni-

tion is discussed. 
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2. Model and Methods 

The present study uses MD simulation of the system consisting of the following com-

ponents: nucleotide, Au NP (1 to 4 Au20 pyramidal shaped NP), and single layer graphene 

with nanopore to translocate the nucleotide as seen in Figure 1. With the proven influence 

of the system components on the vibrational spectra of each part [43,44], the way to collect 

spectra of individual bonds into the spectra distinguishing each nucleotide and its meth-

ylated forms has been tested. The nucleotide vibrational frequencies were attributed to 

stretching, bending, or ring-breathing modes. The vibrational frequencies of the ring bond 

were found to incorporate at varying intensity levels (due to atomic velocity vector pro-

jections onto all bond axes containing the atom) the spectral modes adjacent to the atom 

bonds. In the nucleobase, in such a way, ring bond spectra include modes of amino and 

methyl groups as well as bonded to the ring oxygen and hydrogen. Therefore, correct 

averages over ring bond spectra are expected to enhance dominant modes and suppress 

the off-phase numerical noise. 

For each atom in the bonds of the oligomer, the vibrational density of states (DOS) is 

calculated during translocation time through the graphene nanopore with attached Au 

NPs to accumulate all atomic spectra of the oligomer bonds. The calculation method is 

described in detail in [43,44]. Because the interaction causes shift and/or intensity changes 

in selected vibration frequencies of the nucleotide spectra, the starting point and translo-

cation speed were the same for each nucleotide and methylated form studied. The initial 

nucleotide conditions ensure a similar interaction duration with the sensing system for 

the measured molecule. 

The structure of the SERS sensor in MD calculations with components is presented 

in Figure 1. To the graphene sheet with the 1.5 nm in diameter pore at its center; the py-

ramidal Au20 NP is attached at the edge of the pore. The initial location of the cytosine 

nucleotide at the 4 Å  distance from the pore edge is selected to maximize the interaction 

energy with graphene and Au NP without “sticking” to the sensor part of the system. All 

Van der Waals interactions between the NP, graphene, and the molecule at translocation 

in the pore are included in the correlation interval by setting the initial oligomer z distance 

from the pore plane. The graphene sheet is oriented in the x-y-plane, the edges along the 

y-axis are fixed, and the edges along the x-axis are free. The nucleotide moves with a given 

added velocity of the center of mass (vc.o.m.) in the positive z-direction 𝑣𝐶𝑂𝑀 = 0.025 𝑚/𝑠 

that overall reproduces the 0.1–0.01 m/s motion in a constant electric field in the experi-

ments [45,46]. The system atoms, except fixed ones, are thermally relaxed; sampling is 

done at 300 K for graphene and 30oC for nucleotide, as marked in Figure 1. The attachment 

distance of Au NPs to the graphene surface is 3 Å  [47]. The LJ interaction potential be-

tween Au NP and graphene has σ(C − Au) = 2.74 Å and ε(C − Au) = 0.022 eV and truncated 

at 4.50 Ǻ [47]. In the production run, COM coordinates of the Au NPs have been kept 

attached to graphene. The graphene-nucleotide and Au NP- nucleotide potentials are con-

sidered VdW ones to avoid bond creation and nucleotide attachment in the pore. 
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Figure 1. The structure of the SERS sensor in MD calculations (a) The initial translocation position 

of cytosine nucleotide at and inside of the graphene pore. The orientation of the nucleotide’s cyclic 

plane is at 30° to the z-x plane. Atoms are shown: C in grey, N in blue, O in red, and H in light 

grey. (b) Cytosine (right) is shown with an example of corresponding atom numbering for bonds. 

(c) Au20 nanoparticle optimized by DFT GGA calculations. (d) Nanopore of 1.5 nm diameter with 

C bonds at its edge in graphene sheet. 

 

Figure 2. Simulation models with 1 and 4 Au NPs arranged at the edge of graphene nanopore and 

cytosine oligomer at the start of translocation. At the central panel, 4 Au NPs are identical and ob-

tained by the rotation of the initial. Interaction between 3 components is Van der Waals. 

To resolve the interaction in the sensor, the time step was taken equal to 0.05 fsec 

with 32,768 steps (1.64 psec) for correlation evaluation at a few vibrational periods. It pro-

vides the frequency resolution of vibrational modes at ∆f = 20 cm−1 and frequency interval 

length above 4000 cm−1 [42,43], which is comparable to the 15 cm−1 half-width of the Lo-

rentzian function in the DFT calculation [48]. Collected single-bond spectra of nucleotides 

are orientation and conformation-dependent. The spectral resolution has been sufficient 

to the spectra’s register structural, conformational, and interaction dependence. 

There are two types of numerical noise in the MD spectra. One is from FFT itself; the 

other is the result of the projection of the velocity vector of the atom onto all bonds by 

which the atom has been connected to adjacent atoms, as shown in Figure 3a. The velocity 

autocorrelation function calculation for each bond has introduced low-intensity contribu-

tions of the adjacent bond into the calculated spectra. Therefore, only the highest peaks in 
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the spectrum are considered modes of the bond. The velocity vector contains the contri-

bution of all interactions from adjacent bonds at each time step. The procedure of ring 

averages of the bond’s spectra is shown in Figure 3b,c. The discrete spectral contributions 

of the atoms in the pyrimidine and purine rings were summed with equal unit weights to 

obtain nucleotide spectra of cytosine, thymine, adenine, and guanine. For cytosine and 

adenine, vibrational spectra for the methylated forms of nucleotides were also calculated. 

The summation of contributions from each bond is done in a single direction, either clock-

wise or counterclockwise, including each atom once and only into the single bond of the 

ring. The ring averages of the nucleotide spectra are introduced to compare them with the 

experimental Raman and SERS spectra. Averaging enhances modes distributed between 

adjacent bonds to an atom and cancels numerical noise in the spectra. That corresponds 

to measurement acquiring multiple spectra at time intervals summed up to enhance the 

modes. In MD, the correlation time steps and time interval relates to the accumulation of 

experimental spectra but the spectral map of each molecule bond can’t be compared di-

rectly with the experiment. Therefore, proposed ring averages can evaluate cumulative 

vibrational spectra of oligomers comparable with experimental ones. 

 

Figure 3. (a) The scheme of the velocity vector projection of the atom on the adjacent bond axes in 

autocorrelation function for each bond spectra, (b) the ring bond spectral averages in pyrimidine 

bases (averaged bonds are marked by yellow arrows, direction of bond summation is shown by blue 

circle with arrow), (c) the ring averages of purine bases with each atom spectra averaged only once 

in both pyrimidine (ring 6) and imidazole (ring 5) parts (direction of ring average is shown by blue 

and red circles, the bond connecting two rings is accounted for only once). 

3. Results 

In the current study, we estimated ring-averaged vibrational spectra for the four 

DNA nucleotides and the methylated forms of cytosine and adenine. Obtained spectra 

were compared to the results of the usual Raman measurement and the SERS experiments. 

The way to treat obtained MD vibrational spectra by machine learning random forest al-

gorithm is also considered as related to the type of obtained data. 

3.1. Ring Average Procedure for Puridine Type of Nucleotides 

The ring average procedure has been tested for the adenine nucleotide first. The ob-

tained by MD simulation averaged spectra are shown in Figure 4 for each of the pyrimi-

dine and imidazole (rings 6 & 5) rings and for the combined rings. The averaged results 

were compared with the experimentally obtained Raman [50] spectra for DNA bases and 

SERS [51] spectra of single-stranded DNA fragments for the case of adenine; the high peak 

values of calculated spectra are compiled in Table 1 from Figure 4 together with data from 

the experiments [50,51]. The comparison of calculated frequencies with the experimen-

tally measured ones with suggested attribution of vibrational modes from [50,51] is com-

piled in Table 1 for the frequency range up to 2000 cm−1. Experimental measurements are 

done for nucleobases only in ref. [50], while ref. [51] represents SERS data for single-strand 

fragments measured in a different environment. The mode attribution is taken from the 

experimental data. The numbering of atoms in Table 1 is taken from ref. [50] (Figure 4 and 
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Table 1) with corresponding number of atoms referenced there reproduced in Table 1. The 

MD-calculated modes with frequencies close in value to measured ones are placed into 

the same table row. In the ring average, we could reproduce the stretching modes of the 

bond inside or attached to ring with relatively high accuracy at 997 cm−1, 1119 cm−1, 1323 

cm−1, and 1425 cm−1. The ring breathing and stretching modes at 712 cm−1 and 1526 cm−1 

were also reproduced within 30 cm−1 compared to the experimental results. Among bend-

ing and ring deformation modes with frequencies below 700 cm−1, the 305 and 610 cm−1 

bending modes are reproduced. 

The ring averaging procedure leaves a large number of defined bending modes and 

reduces the number of well-defined stretching modes compared with the number of ex-

perimentally measured modes. These experimental frequencies not represented in the av-

erages should be mostly attributed to the bond attached to the ring. Therefore, in addition 

to the ring averages, the bonds attached to the ring should be weighed and added to the 

whole spectra. The values of weight that could be utilized in averaging for the bonds at-

tached to the ring are subject to study. 

  

 

Figure 4. (a) The vibrational spectra of adenine pyrimidine ring (ring 6), (b) imidazole ring (ring 5), 

(c) the combined spectra for both rings of adenine with peak frequency values marked by numbers. 

Table 1. Comparison of the experimentally available adenine Raman modes, ref.[50] and ref. [51], 

with our ring averaged results shown in Figure 4. The stretching and bending modes are indicated 

by letters (s) and (b). Attribution atom numbering is from the Figure 4 and Table 3 in ref. [50]. 

Experimental Bands, SERS, 

Adenine 

MD Calculated Vibrational Modes  

(~2000 cm−1), Adenine 

Assignments [50] 

(s)-Stretching, (b)-Bending 

1986 [50] 2019 [51] 
Average, Ring 

(6) 

Average, Ring 

(5) 

Average, Ring 

(6-5) 
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548  570  570  

626 628 610 610 610 N9R(b)+C6N12(b)-N7C5C6(b) 

 684  651   

732 737  712 712 Ring stretching (breathing) 

  814 814 814  

  895 895   

960 968 977 977 977 NH2(r)+N1C6(s) 

1028      

1122  1119 1119 1119 -N3C2(s)+N9R(s) 

1194 1194     

1264 1270     

1334 1337 1323 1323 1323 -N7C5(s)+C8N7(s) 

1370 1376 1364    

1390 1399     

1460 1455 1445 1425 1425  

1515 1550 1526 1526 1526 Ring stretching 

  1710  1710  

3.2. Metylated Forms of Cytosine and Adenine 

The vibrational spectra of the methylated forms of the cytosine and adenine nucleo-

tides are subjected to the ring average procedure to understand the influence of the adja-

cent bonds on the unit weight of the ring bond in the average. The weights of each atom 

in ring bonds are kept unit for all three cytosine forms, Cytosine itself (CYT), 5-Methylcy-

tosine (5MC), and 5-Hydroxymethylcytosine (HMC), for the vibrational spectra to be ring-

averaged. T The result in Figure 5 includes the spectra for all three forms with our modes 

attribution [44] for cytosine in the left panel and a table of comparison of the MD calcu-

lated modes with the measured SERS frequencies [50,51] in the right panel. The compari-

son of MD with SERS modes of CYT [1] from ref. [50] and CYT [2] from ref. [51] for cyto-

sine, given in the right panel of Figure 5, modes marked in color are present only in meth-

ylated forms of cytosine and have no corresponding experimental values that let us dis-

tinguish methylated forms by differences in spectra. The 203 and 285 cm−1 modes relate to 

ring deformation and the presence of N atoms in the ring. The 5-methyl and hydroxyme-

thyl groups are attached to the C(3) atom of the ring as marked on the left pane, and the 

attachment will lead to changes in the stretching and bending modes in the 427, 692, and 

1079 cm−1. The amino group NH2 causes changes in the 1750 cm−1 mode for HMC. It shows 

the possibility of spectral separation of the methylated forms by the presence or absence 

of indicating modes in cytosine vibrational spectra. 
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Figure 5. Spectra and modes of cytosine (CYT) with methylated forms 5-Metylcytosine (5MC) and 

5-Hydroxymethylcytosine (HMC): (Left pane) ring average of the spectra for 3 forms with mode 

attribution [44] of cytosine; (Right pane) comparison of MD and experimental SERS modes, with 

CYT [1] from ref. [50] and CYT [2] from ref. [51] for cytosine nucleotide, modes marked in color are 

present only in methylated forms of cytosine and have no corresponding experimental values. 

3.3. Stability of the MD Vibrational Spectra vs.Interaction with 1 and 4 Au NP 

To introduce multiple NP, we compared the influence of the number of Au NP (1 

and 4 nanoparticles) on the spectra for cytosine and its methylated forms for nucleotides 

passing through the Au NP–graphene sensor. The different numbers of Au NPs influence 

the orientation and conformation of the nucleotides in the sensor during translocation and 

might influence interaction duration and strength. The graphs in Figure 6 compare the 

ring-averaged spectra of CYT, 5MC, and HMC in the case of 1 and 4 attached Au NPs. 

There was a similarity in the frequency or intensity of the peaks, with changes in some 

modes being revealed. A simple increase in the number of metal particles did not strongly 

increase the intensity of the peaks. Many of the peaks with increased intensity were vibra-

tion modes related to the O atom, methyl group CH3, and amino group NH2 attached to 

the pyrimidine ring. Interactions with the different numbers of Au NPs of ring-bonded 

groups lead to the relaxation of vibrational energy to other modes in the MD model. The 

attribution groups is shown for some high peaks in spectra for CYT, 5MC, and HMC in 

Figure 6. We can see a of spectral changes by largest contributions into the ring averages 

due to ring-bonded atoms and redistribution of mode intensities and possible slight mode 

shifts in 1100–1700 cm−1 interval that represents stretching modes in the ring and adjacent 

bonds. Therefore, instant values of modes will depend on the design of plasmon enhancer 

particles in such type of SERS sensor. The starting orientation of all three forms of cytosine 

nucleotide was kept the same. However, the presence of methyl and hydroxyl groups in-

fluenced the conformational motion of methylated forms during translocation, enhancing 

different frequency modes. 



Eng. Proc. 2023, 35, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 6. (a) Cytosine nucleotide ring average spectra calculated for 1 and 4 Au NPs attached to 

graphene nanopore (as shown in the upper right pane); (b) the corresponding spectra of 5-methyl-

cytosine; (c) the spectra of 5-hydroxymethylcytosine. Attribution of some spectral peaks is shown 

for each form of cytosine. 

3.4. Utilization of Machine Learning Algorithms for MD Spectra Recognition 

The present SERS sampling includes accumulating a number of single-molecule 

spectra taken instantly at slightly changing orientation and conformation state, leading to 

the differences in measured spectra. Machine learning (ML)-assisted sampling of SERS 

substrates was implemented to improve data collection efficiency [52] in the experiment. 

ML algorithm was also applied to the ab initio calculation of Raman spectra of an ethylene 

molecule [41]. The spectra in the MD calculation are the results of Fourier transform of the 

velocity autocorrelation. We obtain the spectra at the same correlation interval for differ-

ent interaction conditions and different modifications of nucleotides to be used as ML 

algorithm training sets. The applicability of the random forest algorithm was tested with 

the input of frequencies and intensities (F & I) of spectral peaks. The ring-averaged spec-

tral data of cytosine and its methylated forms were used as the training set with the 80–

20% test-train split of data. The test part was allocated either randomly (green line in (a, 

c, d)) or manually (violet line in (c & d)). The algorithm was taken from Python libraries. 

Figure 7 shows the MD calculated spectral data as blue, yellow, and red dots for CYT, 

5MC, and HMC nucleotides in 1 Au NP case. The random forest prediction at the 2-para-

metric 86 points data set is shown as a green line in the (a) figure and gives a large error, 

especially above2000 cm−1. To increase data set, the differences between nearest frequen-

cies and intensities (ΔF and ΔI) were added into 4-parametric data set. The prediction 

error above 2000 cm−1 decreased, and the weights of the modes in the (F, I, ΔF, ΔI) data 

improved. Correspondence between the random and manual train-test split is tested in 

Figure 7c on the 4-parametric data set with converged prediction between splits below 

700 cm−1 and sufficiently large difference above. 
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To double the size of the data set, we combined the data sets of vibrational spectra of 

1 Au NP and 4 Au NP sensors for CYT, 5MC, and HMC nucleotides. The convergence 

interval of the prediction increased up to 1000 cm−1. The error above 2000 cm−1 was also 

reduced, especially in a random split. Convergence between types of the split here indi-

cates the spectral data set size sufficiency for prediction in the present 4-parametric rep-

resentation. The spectra at different interaction conditions in the data set will improve the 

prediction power of the random forest algorithm as applied to the MD calculated vibra-

tional spectra. 

  

  

Figure 7. (a) Random forest prediction for 2-parametric (F & I) data set, random 0.2 split; (b) predic-

tion for 4-parametric (F, I, ΔF, ΔI) data set, random 0.2 split (c) prediction for 4-parametric (F, I, ΔF, 

ΔI) data set, random and manual 0.2 split; (d) prediction for 4-parametric (F, I, ΔF, ΔI) data set, 

random and manual 0.2 split, data from 1 Au NP and 4 Au NP spectra. 

4. Discussion 

By averaging the spectra between ring bonds in nucleotides, we received oligomer 

vibrational spectra that reproduce the majority of modes obtained by Raman spectroscopy 

and SERS experiments with high accuracy. In cytosine, the methyl and hydroxyl groups 

are characterized by the following features: deformation vibrations of the entire ring 

bonds at 203 cm−1, vibrations at the attachment of the deoxyribose to N atom at 285 cm−1, 

stretching motion of the C- C atoms from 400 cm−1 to 1000 cm−1, and oscillatory motion of 

the amino group attached to ring C atom at 1750 cm−1. The change in the calculated sensor 

environment by the increase in the number of Au NPs resulted in a relaxation of the vi-

brational energy of oligomers due to the change in interaction. However, there was no 

significant mode change (variations in intensity and small frequency shifts) for standard 

and methylated forms of cytosine. 

The possibility of applying machine learning algorithms to the prediction of MD cal-

culated vibrational spectra has been investigated from the point of the training data set 

size and its parameter number. The use of spectra for the different interactions of the oli-

gomer with the sensor environment as training data provides the required data set size to 

converge prediction. Such algorithm training on the calculated data can be used to predict 

(a) (b) 

(c) (d) 
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measured oligomer spectra in different single-molecule SERS sensors [53,54] with differ-

ent types of plasmon enhancer structures. 
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